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ABSTRACT
Multimedia recommendation has received much attention in recent
years. It models user preferences based on both behavior informa-
tion and item multimodal information. Though current GCN-based
methods achieve notable success, they suffer from two limitations:
(1)Modality noise contamination to the item representations.
Existing methods often mix modality features and behavior features
in a single view (e.g., user-item view) for propagation, the noise in
the modality features may be amplified and coupled with behavior
features. In the end, it leads to poor feature discriminability; (2)
Incomplete user preference modeling caused by equal treat-
ment of modality features. Users often exhibit distinct modality
preferences when purchasing different items. Equally fusing each
modality feature ignores the relative importance among different
modalities, leading to the suboptimal user preference modeling.

To tackle the above issues, we propose a novelMulti-ViewGraph
Convolutional Network (MGCN) for the multimedia recommen-
dation. Specifically, to avoid modality noise contamination, the
modality features are first purified with the aid of item behav-
ior information. Then, the purified modality features of items and
behavior features are enriched in separate views, including the user-
item view and the item-item view. In this way, the distinguishability
of features is enhanced. Meanwhile, a behavior-aware fuser is de-
signed to comprehensively model user preferences by adaptively
learning the relative importance of different modality features. Fur-
thermore, we equip the fuser with a self-supervised auxiliary task.
This task is expected to maximize the mutual information between
the fused multimodal features and behavior features, so as to cap-
ture complementary and supplementary preference information
simultaneously. Extensive experiments on three public datasets
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Figure 1: Illustration of the modality noise contamination.
The left image shows the product that user wants to purchase,
while the right image is not. Red boxes/words illustrate the
part that may be focused on. Due to contamination caused
by the image background, the brightness, etc, the cosine sim-
ilarity [15] of these two clothes reaches 64.8%.

demonstrate the effectiveness of our methods. Our code is made
publicly available on https://github.com/demonph10/MGCN.
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1 INTRODUCTION
In contemporary times, recommender systems have attained wide-
spread adoption in diverse domains [7, 23], with the objective of
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aiding users in discovering information that aligns with their pref-
erences. As users’ preferences are often influenced by multimodal
information, researchers have begun to incorporate multimodal
information into recommendation frameworks [41, 51]. A typical
pipeline of multimedia recommendation is first extracting multi-
modal features by pre-trained deep neural networks, then fusing
multimodal featureswith behavior features as the representations of
items [2, 18]. Based on the multimodal representations of items, the
user preferences are modeled through a carefully designed collabo-
rative filtering recommendation framework. Since the collaborative
signal is enhanced by multimodal features, the recommendation
performance is thereby improved.

Early efforts in the multimedia recommendation, such as Vi-
sual Bayesian Personalized Ranking (VBPR) [10] and Cross-modal
Knowledge Embedding (CKE) [47] extend Matrix Factorization
(MF) [14] methods by incorporating visual features. As user inter-
action data can be naturally represented as a bipartite graph, recent
researchers prefer to Graph Convolution Network (GCN) to cap-
ture high-order connectivity and enhance the preferences features
[17, 38, 39, 43]. For example, MMGCN [39] incorporates different
modality information into multiple user-item views, and models
user preferences by concatenating the learned modality representa-
tion. Based on MMGCN, GRCN [38] utilizes multimodal features
to refine user-item view, with the aim of pruning false-positive
interaction. These GCN-based methods achieve great success and
obtain state-of-the-art performance.

Despite the notable success, existing multimedia recommenda-
tion methods still suffer from two limitations: (1) Modality noise
contamination to the item representations. There is plenty of
preference-irrelevant modality noise contained in multimodal infor-
mation [49, 51], such as the redundant text description, the image
background, and the image brightness (e.g., which can be clearly
seen in Figure.1). Directly injecting modality features would con-
taminate the representation learning of items. Even worse, current
GCN-based [4, 21, 39] methods tend to mix modality features and
behavior features in the user-item view for propagation. It means
the noise would propagate between nodes, making the modality
noise contamination further amplified and coupled with behavior
features. In the end, the distinguishability of all node represen-
tations decreases. (2) Incomplete user preference modeling
caused by equal treatment of modality features. Existing stud-
ies typically fuse the modality features by simple linear combina-
tion or concatenation, which treats each modality features equally
[18, 25, 39]. Such way of modeling ignores the fact that users have
different modality preferences when purchasing different items. In
other words, users may pay attention to the thumbnail (i.e., visual
information) when watching micro-video, while focusing on the
description (i.e., textual information) when buying books. Current
fusion mechanism cannot capture the relative importance of dif-
ferent modality features, thereby falling short in comprehensive
modeling user preferences. These limitations lead to a suboptimal
recommendation performance.

To tackle the above issues, we propose a novelMulti-ViewGraph
Convolutional Network (MGCN) for the multimedia recommenda-
tion. The proposed model equips three specially designed modules:
the Behavior-Guided Purifier, the Multi-View Information Encoder,
and the Behavior-Aware Fuser. On one hand, to purify the modality

information, a behavior-guided purifier is employed to denoise the
modality features. It filters out preference-irrelevant features from
the raw modality information, with the guidance of behavior infor-
mation. Subsequently, the purified modality features are enriched
by encoding semantically correlative signals under the item-item
view, while user and item behavior features are enhanced by en-
coding the high-order collaborative signals under the user-item
view. On the other hand, a behavior-aware fuser is developed to
comprehensively model user preferences. It adaptively fuses items’
modality features according to users’ modality preferences, which
are distilled from behavior features. A self-supervised auxiliary task
is subsequently introduced during the fusion phase. The task is
expected to maximize the mutual information between the fused
multimodal features and behavior features, with the aim of simul-
taneously capturing complementary and supplementary features
from both multimodal and behavior information. Comprehensive
experiments on three public datasets demonstrate the distinct ad-
vantages of our methods.

Our main contributions can be summarized as follows:

• We develop a behavior-guided purifier, which effectively
avoids the noise contamination issue with the guidance of
behavior information.

• We design a multi-view information encoder, which enriches
the representations by separately capturing high-order col-
laborative signals and semantically correlative signals.

• We propose a behavior-aware fuser and construct a novel
self-supervised auxiliary task, which comprehensively mod-
els user preferences through adaptively fusing behavior in-
formation and multimodal information.

2 MODEL
2.1 Problem Definition
Let U = {𝑢} donate the user set and I = {𝑖} donate the item set.
The input ID embeddings of user𝑢 and item 𝑖 are E𝑖𝑑 ∈ R𝑑×( |𝑈 |+|𝐼 | ) .
𝑑 is the embedding dimension. Then, we denote each item modality
features as E𝑖,𝑚 ∈ R𝑑𝑚×|𝐼 | , where 𝑑𝑚 is the dimension of the
features,𝑚 ∈ M is the modality, and M is the set of modalities.
In this paper, we mainly consider visual and textual modalities
denoted byM = {𝑣, 𝑡}. Please kindly note that our method is not
fixed to the two modalities and multiple modalities can be involved.

Next, user historical behavior data is denoted asR ∈ {0, 1} |𝑈 |× |𝐼 | ,
where each entryR𝑢,𝑖 = 1 if user𝑢 clicked item 𝑖 , otherwise𝑅𝑢,𝑖 = 0.
Naturally, the historical interaction data R can be regarded as a
sparse behavior graph G = {V, E}, whereV = {U ∪ I} denotes
the set of nodes and E = {(𝑢, 𝑖) |𝑢 ∈ U, 𝑖 ∈ I, 𝑅𝑢𝑖 = 1} denotes the
set of edges. The purpose of the multimedia recommendation is
to accurately predict users’ preferences by ranking items for each
user according to predicted preferences scores 𝑦𝑢𝑖 .

2.2 Behavior-Guided Purifier
Modality information provides rich and meaningful content infor-
mation of items, while inevitably containing modality noise as well.
To avoid noise contamination, we propose a behavior-guided pu-
rifier. Specifically, we first transform raw item modality features
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Figure 2: (a) The overall framework. (b) The behavior-guided purifier filters out modality noise with the help of behavior
information. (c) The behavior-aware fuser adaptively fuses modality features according to user modality preferences.

E𝑖,𝑚 into high-level features ¤E𝑖,𝑚 :
¤E𝑖,𝑚 = W1E𝑖,𝑚 + b1, (1)

whereW1 ∈ R𝑑×𝑑𝑚 and b1 ∈ R𝑑 denote the trainable transforma-
tion matrix and the bias vector.

Then the preference-relevant modality features are separated
from the modality features, with the guidance of behavior features:

¥E𝑖,𝑚 = 𝑓𝑚𝑔𝑎𝑡𝑒 (E𝑖,𝑖𝑑 , ¤E𝑖,𝑚) = E𝑖,𝑖𝑑 ⊙ 𝜎 (W2 ¤E𝑖,𝑚 + b2), (2)

whereW2 ∈ R𝑑×𝑑 and b2 ∈ R𝑑 are learnable parameters, ⊙ repre-
sents the element-wise product and 𝜎 is the sigmoid nonlinearity.
With the guidance of behavior features that are encoded in the
ID embedding E𝑖,𝑖𝑑 , we separate the preference-relevant modality
features ¥E𝑖,𝑚 from item’s representation ¤E𝑖,𝑚 . For users, we ob-
tain their modality features by aggregating the interacted items’
modality features. We detail the process in Section 2.3.

2.3 Multi-View Information Encoder
According to [20, 30], both the collaborative signals and the seman-
tically correlative signals can significantly influence the efficacy
of multimedia recommendation. Thus, inspired by [30], we design
a multi-view information encoder to enhance the discriminability
of features. It captures collaborative signals from the view of the
user-item relationship, and semantically correlative signals from
the view of the item-item relationship.

2.3.1 User-Item View. In particular, to capture high-order collabo-
rative signals, we construct a GCN module to propagate ID embed-
dings of users and items over the interaction graph. The message
propagation stage at 𝑙-th graph convolution layer can be formulated
as:

E(𝑙 )
𝑖𝑑

= E(𝑙−1)
𝑖𝑑

L, (3)

where E(𝑙 )
𝑖𝑑

represents the enhanced representations of users and

items in 𝑙-th graph convolution layer, E(0)
𝑖𝑑

are the initial ID em-

beddings, that is e𝑖𝑑𝑢
(0)

= e𝑖𝑑𝑢 and e𝑖𝑑
𝑖

(0)
= e𝑖𝑑

𝑖
. L represents the

Laplacian matrix for the user-item graph, which is formulated as:

L = D− 1
2 AD− 1

2 , and A =

���� 0 R
RT 0

���� , (4)

where R is the user-item interaction matrix, and 0 is the all-zero
matrix; A is the adjacency matrix and D is the diagonal degree
matrix; as such, the nonzero off-diagonal entry L𝑢𝑖 = 1/

√︁
|N𝑢 | |N𝑖 |,

which avoids the scale of embeddings increasing with graph convo-
lution operations. N𝑢 represents the set of user’s 𝑢 neighbors, N𝑖

represents the set of item’s 𝑢 neighbors, |N𝑢 | and |N𝑖 | denote the
size of N𝑢 and N𝑖 .

The representations of the 𝑙-th layer encode the 𝑙-order neigh-
bors’ information. By aggregating high-order neighbor information,
the final representations Ē𝑖𝑑 are obtained:

Ē𝑖𝑑 =
1

𝐿 + 1

𝐿∑︁
𝑖=0

E(𝑙 )
𝑖𝑑
. (5)

2.3.2 Item-Item View. Similar to the view of user-item, graph con-
volution operations on item-item affinity graphs can capture seman-
tically correlative signals, thereby enriching item modality features.
However, propagating modality feature in a dense affinity graph
is computationally demanding and may introduce noise through
unimportant edges. Thus, we conduct KNN sparsification [5] on
the dense graph.

Specifically, we first quantify the item-item affinities based on
the similarity of each raw modality feature. Considering the com-
putational complexity, cosine similarity has been selected. Then, a
fully-connected graph is constructed, to indicate item-item affinities
in modality𝑚. The element in row 𝑎 and column 𝑏 of the affinity
graph S𝑚 is:

𝑠𝑚
𝑎,𝑏

=
(𝑒𝑚𝑎 )T𝑒𝑚

𝑏

∥𝑒𝑚𝑎 ∥∥𝑒𝑚
𝑏
∥ ,

(6)

where 𝑠𝑚
𝑎,𝑏

represents the similarity between item 𝑎 and item 𝑏 in
modality𝑚.
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By performing graph convolution operations, we capture the
common modality features of adjacent nodes, which can be used
to enhance the target node. To capture the most relevant features
from neighbors, for each item 𝑎, we only preserve 𝐾 edges with the
greatest similarity:

¤𝑠𝑚
𝑎,𝑏

=

{
𝑠𝑚
𝑎,𝑏
, 𝑠𝑚

𝑎,𝑏
∈ top−𝐾 ({𝑠𝑎,𝑐 , 𝑐 ∈ I}),

0, otherwise,
(7)

where ¤𝑠𝑚
𝑎,𝑏

represents the edge weight between item 𝑎 and item 𝑏 in
𝑚modality. Same to the user-item view, we normalize the item-item
affinity matrix to alleviate the exploding gradient problem:

¥S𝑚 = D
− 1

2
𝑚

¤S𝑚D
− 1

2
𝑚 , (8)

where Dm is the diagonal degree matrix of ¤S𝑚 . Then, we propagate
all items’ modality features Ē𝑖,𝑚 through a GCN module on the
corresponding item-item affinity matrix ¥S𝑚 :

Ē𝑖,𝑚 = ¥S𝑚 ¥E𝑖,𝑚 . (9)

It is capable of enriching the feature by capturing common features
of similar items. However, it should be noted that in the item-item
view, the semantic similarity of node modality features is signifi-
cantly decreasing with the propagation path increasing. Stacking
multiple graph convolution layers not only leads to the node over-
smoothing issue, but also easily captures noisy features. Therefore,
in this study, we constructed a shallow GCN module to propagate
modality information over ¤S𝑚 (we set the graph convolution layer
to 1, and prove the effect in Section 3.3).

Finally, we obtain user modality features by aggregating inter-
acted item modality features. User 𝑢’s modality feature ē𝑢,𝑚 is
expressed as:

ē𝑢,𝑚 =
∑︁
𝑖∈N𝑢

1√︁
|N𝑢 | |N𝑖 |

ē𝑖,𝑚, (10)

By concatenating user modality features Ē𝑢,𝑚 with item modal-
ity features Ē𝑖,𝑚 , the final modality feature Ē𝑚 ∈ R𝑑×( |𝑈 |+|𝐼 | ) is
obtained.

2.4 Behavior-Aware Fuser
To accurately capture items’ features in different modalities, we
design a behavior-aware fuser. It allows flexible fusion weight allo-
cation based on user modality preferences, which can be distilled
from the behavior features. Moreover, to encourage the model to
comprehensively explore user preference, a self-supervised task is
introduced in the fusion process. The task is expected to maximize
the mutual information [12, 13] between behavior features and
fused multimodal features.

Specifically, the modality preferences P𝑚 are first distilled from
user behavior features:

P𝑚 = 𝜎 (W3Ē𝑖𝑑 + b3), (11)

whereW3 ∈ R𝑑×𝑑 and b3 ∈ R𝑑 are learnable parameters, 𝜎 is the
sigmoid nonlinearity, which learns a nonlinear gate to model user
modality features.

There are both modality-shared and modality-specific features
possessed across all modalities. For modality-shared features, user
attention remains consistent, as this aligns with the intended pur-
pose of the user’s purchase. For this reason, we first extract the

modality-shared features through attention mechanisms [28, 35],
where the attention weight of each modality features Ē𝑚 are calcu-
lated as:

𝛼𝑚 = softmax(qT
1 tanh(W4Ē𝑚 + b4)), (12)

where q1 ∈ R𝑑 denotes attention vector andW4 ∈ R𝑑×𝑑 , b4 ∈ R𝑑
denote the weight matrix and the bias vector, respectively. No-
tice that these parameters are shared for all modalities. Then, the
modality-shared features E𝑠 are obtained:

E𝑠 =
∑︁

𝑚∈M
𝛼𝑚 Ē𝑚 . (13)

Then, the modality-specific features Ẽ𝑚 are obtained by subtract-
ing the modality-shared features Ẽ𝑠 :

Ẽ𝑚 = Ē𝑚 − E𝑠 . (14)

Finally, we adaptively fuse the modality-specific features Ẽ𝑚 ,
and combine them with modality-shared features E𝑠 as the final
features E𝑚𝑢𝑙 :

E𝑚𝑢𝑙 = E𝑠 +
1

|M|
∑︁

𝑚∈M
Ẽ𝑚 ⊙ P𝑚 . (15)

In order to promote the exploration of behavior and multimodal
information, a self-supervised auxiliary task has been devised. The
mathematical expression of this task is as follows:

L𝐶 =
∑︁
𝑢∈U

−log
exp(𝑒𝑢,𝑚𝑢𝑙 · 𝑒𝑢,𝑖𝑑/𝜏)∑

𝑣∈U exp(𝑒𝑣,𝑚𝑢𝑙 · 𝑒𝑣,𝑖𝑑/𝜏)

+
∑︁
𝑖∈I

−log
exp(𝑒𝑖,𝑚𝑢𝑙 · 𝑒𝑖,𝑖𝑑/𝜏)∑

𝑗∈I exp(𝑒 𝑗,𝑚𝑢𝑙 · 𝑒 𝑗,𝑖𝑑/𝜏)
,

(16)

where 𝜏 is the temperature hyper-parameter of softmax.

2.5 Predictor
Based on the enhanced behavior features and multimodal features,
we form the final representations of users and items:

e𝑢 = ē𝑢,𝑖𝑑 + e𝑢,𝑚𝑢𝑙 ,

e𝑖 = ē𝑖,𝑖𝑑 + e𝑖,𝑚𝑢𝑙 .
(17)

Followed [11], the inner product is adopted to determine the likeli-
hood of interaction between user 𝑢 and item 𝑖:

𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑢, 𝑖) = 𝑦𝑢𝑖 = eT
𝑢e𝑖 . (18)

2.6 Optimization
During the phase of model training, we adopt the Bayesian Per-
sonalized Ranking (BPR) loss L𝐵𝑃𝑅 as the basic optimization task,
which assumes that users prefer historically interacted items over
unclicked ones. And it is combined with auxiliary self-supervised
tasks to jointly update the representations of users and items:

L = L𝐵𝑃𝑅 + 𝜆𝐶L𝐶 + 𝜆𝐸 ∥E∥2, (19)

where E is the set of model parameters; 𝜆𝐶 and 𝜆𝐸 are hyperparam-
eters to control the effect of the contrastive auxiliary task and the
𝐿2 regularization, respectively.
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Table 1: Statistics of the experimental datasets

Dataset #User #Item #behavior Density

Baby 19,445 7,050 160,792 0.117%
Sports 35,598 18,357 296,337 0.045%
Clothing 39,387 23,033 278,677 0.031%

3 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the
performance of the proposed MGCNmodel on three public datasets.
The following four questions can be well answered through experi-
ment results:

• RQ1: How does MGCN perform compared with the state-
of-the-art multimedia recommendation methods and other
collaborative filtering methods?

• RQ2: How do the modules influence the performance of
MGCN?

• RQ3: How do different hyper-parameter settings impact the
results of the MGCN model?

• RQ4: Why purifying modality information can achieve bet-
ter recommendation performance?

3.1 Experimental Settings
3.1.1 Dataset. Following [48, 53], we conduct experiments on
three categories of the widely used Amazon dataset1: (a)Baby, (b)
Sports and Outdoors, and (c) Clothing, Shoes, and Jewelry, whichwe
refer to as Baby, Sports, and Clothing in brief. The statistics of these
datasets are presented in Table.1. Following [53], we use the pre-
extracted 4,096-dimensional visual features and 384-dimensional
text features, which have been published in [52].

3.1.2 Compared Methods. To evaluate the effectiveness of our pro-
posed model, we compare it with several representative recommen-
dation models. These baselines fall into two groups: General models,
which only rely on interactive data for recommendation; Multime-
dia models, which utilize both interactive data and multi-modal
features for the recommendation.
i) General Models:

• MF [14]: This is a classic collaborative filtering method,
which learns user and item representations with a matrix
factorization framework.

• LightGCN [11]: This is the most popular GCN-based col-
laborative filtering method, which simplifies the design of
GCN to make it more appropriate for the recommendation.

ii) Multimedia Models:
• VBPR [10]: This is a classic multimedia filtering method,
which integrates the visual features and ID embeddings of
each item as its representation. This can be seen as an exten-
sion of the MF model [14].

• MMGCN [39]: This method constructs a modal-specific
graph to learn different modality features. It concatenates
all modality features to obtain the representations of users
or items for prediction.

1Datasets are available at http://jmcauley.ucsd.edu/data/amazon/links.html

• GRCN [38]: This method improves previous GCN-based
models by refining the user-item interaction graph. With the
help of multimodal features, the false-positive interaction
can be identified and removed.

• SLMRec [24]: This method devises a self-supervised frame-
work for multimedia recommendation. It constructs a node
self-discrimination task, attempting to uncover the item mul-
timodal pattern.

• BM3 [53]: This method simplifies the self-supervised frame-
work. It removes the requirement of randomly sampled
negative examples and directly perturbs the representation
through a dropout mechanism.

• MICRO [49]: This method is an extension of the state-of-the-
art method LATTICE [48], which mines the latent structure
between items by learning an item-item graph from their
multimodal features.

3.1.3 Evaluation Protocols. For a fair comparison, we follow the
same evaluation setting of [49, 53] with a random data splitting
8:1:1 on the interaction history of each user for training, validation,
and testing. Besides, we follow the all-ranking protocol to evaluate
the top-K recommendation performance and report the average
metrics for all users in the test set: Recall@𝐾 and NDCG@𝐾 .

3.1.4 Implementation Details. We implement the proposed model
and all the baselines with MMRec 2 [52], which is a unified open-
source framework to develop and reproduce recommendation algo-
rithms. To ensure a fair comparison, we optimize all the methods
with Adam optimizer and referred to the best hyperparameter set-
tings reported in the original baseline papers. As for the general
settings, For the general settings, we initialized the embedding
with Xavier initialization of dimension 64, set the regularization
coefficient to 𝜆𝐸 = 10−4, and the batch size set to 𝐵 = 2048. For
the self-supervised task, we set the temperature 𝜏 = 0.2, which is
commonly considered a great choice. For convergence considera-
tion, the early stopping and total epochs are fixed at 20 and 1000,
respectively. Following [49], we use Recall@20 on the validation
data as the training-stopping indicator.

3.2 Overall Performance (RQ1)
Table.2 shows the performance comparison of the proposed MGCN
and other baseline methods on three datasets. From the table, we
find several observations:

(1)MGCN significantly outperforms both general recom-
mendationmodels andmultimedia recommendationmodels.
This indicates that our proposed method is well-designed for the
multimedia recommendation. Specifically, instead of directly incor-
poratingmodality information, we first purified it with the guidance
of behavior information. This avoids contamination from modality
noise. Besides, through the multi-view information encoder, the
behavior features and modality features are enriched, by encoding
the high-order collaborative signal and semantically correlative sig-
nals. We then obtain each user’s and item’s representations through
a behavior-aware fuser, which adaptively fuses modality features
according to user modality preference. Moreover, we introduce a
self-supervised task to maximize the mutual information between

2https://github.com/enoche/MMRec
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Table 2: Performance Comparison of Different Recommendation Models

Datasets Metrics MF LightGCN VBPR MMGCN GRCN SLMRec BM3 MICRO Ours
UAI’09 SIGIR’20 AAAI’16 MM’19 MM’20 TMM’22 WWW’23 TKDE’22

Baby

Recall@10 0.0357 0.0479 0.0423 0.0378 0.0532 0.0540 0.0564 0.0584 0.0620
Recall@20 0.0575 0.0754 0.0663 0.0615 0.0824 0.0810 0.0883 0.0929 0.0964
NDCG@10 0.0192 0.0257 0.0223 0.0200 0.0282 0.0285 0.0301 0.0318 0.0339
NDCG@20 0.0249 0.0328 0.0284 0.0261 0.0358 0.0357 0.0383 0.0407 0.0427

Sports

Recall@10 0.0432 0.0569 0.0558 0.0370 0.0559 0.0676 0.0656 0.0679 0.0729
Recall@20 0.0653 0.0864 0.0856 0.0605 0.0877 0.1017 0.0980 0.1050 0.1106
NDCG@10 0.0241 0.0311 0.0307 0.0193 0.0306 0.0374 0.0355 0.0367 0.0397
NDCG@20 0.0298 0.0387 0.0384 0.0254 0.0389 0.0462 0.0438 0.0463 0.0496

Clothing

Recall@10 0.0187 0.0340 0.0280 0.0197 0.0424 0.0452 0.0421 0.0521 0.0641
Recall@20 0.0279 0.0526 0.0414 0.0328 0.0650 0.0675 0.0625 0.0772 0.0945
NDCG@10 0.0103 0.0188 0.0159 0.0101 0.0225 0.0247 0.0228 0.0283 0.0347
NDCG@20 0.0126 0.0236 0.0193 0.0135 0.0283 0.0303 0.0280 0.0347 0.0428

behavior features and fused multimodal features. This allows the
model effectively extract user preferences from the various fea-
tures, rather than seeking shortcuts from behavior or multimodal
features. As a result, MGCN outperforms existing methods on all
three datasets. Especially on the Clothing dataset, MGCN achieves
23.3% improvement over the best baseline methods.

(2) Compared to the MF-based methods, GCN-based meth-
ods are more vulnerable to modality noise contamination.
Specifically, VBPR outperformsMF by directly concatenating modal
and behavioral features, while MMGCN performs worse than Light-
GCN. This is mainly because of the message propagation mecha-
nism in GCN-based methods, which continuously spreads noise and
contaminates the representations of all users and items. Although
some self-supervised methods (such as SLMRec and BM3) have con-
structed a self-discriminating task for nodes and partially alleviated
the problem of modality noise contamination by eliminating redun-
dant modality information. Nonetheless, these methods are still
prone to modality noise contamination. In contrast, our proposed
method employs a behavior-guided purifier to fundamentally filter
out modality noise. As a result, our method has achieved the best
recommendation performance.

(3) An indirect injection of modality features may mit-
igate the issue of modality noise contamination. Different
from injecting modality features into representations, GRCN exclu-
sively utilizes modality features to refine the user-item interaction
graph. By uncovering latent item semantic relationships, MICRO
constructed auxiliary item-item graphs for message propagation.
However, both GRCN and MICRO have some limitations. First, they
require frequent graph structure updates during training, which
leads to high computational complexity and memory consumption.
Additionally, modality information is not incorporated into rep-
resentation learning, which limits the ability to comprehensively
model user preferences. In contrast, our proposed method tackles
the noise contamination issue via a purifier. The purified modality
features are then enriched under different views. This allows for
fine-grained fusion with behavior features, ultimately leading to
the best results.
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Figure 3: Performance Comparison between different vari-
ants of MGCN. (Blue: w/o BG, Light Blue: w/o MV, Yellow:
w/o BA, Orange: MGCN)

3.3 Ablation Study (RQ2)
To comprehensively investigate the effects of various factors, we
perform ablation studies on both the modules of MGCN and modal-
ity features.

3.3.1 Effect of Modules. To investigate the effects of the keys com-
ponents in MGCN, we set up the following model variants:

• w/o BG: We remove the behavior-guided purifier. Instead,
the pre-extracted modality features are directly fed into the
multi-view information encoder.

• w/o MV: We remove the multi-view information encoder.
The modality features are concatenated and propagated on
the user-item interaction graph. It is equally to simply encode
collaborative signals.

• w/o BA: We remove the behavior-aware fuser. The final
representations are obtained by averaging each modality
feature 𝐸𝑚 and behavior features 𝐸𝑖𝑑 .

Figure. 3 records Recall@20 of these variants on three datasets, and
we have the following finds:
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Table 3: Performance Comparison under different modalities

Datasets Modality Recall@20 NDCG@20

Baby
Text 0.0857 0.0386
Visual 0.0939 0.0408
All 0.0964 0.0427

Sports
Text 0.1017 0.0454
Visual 0.1055 0.0465
All 0.1106 0.0496

Clothing
Text 0.0902 0.0404
Visual 0.0919 0.0422
All 0.0945 0.0428

(1) On the three datasets, models w/o BG significantly underper-
forms MGCN. It indicates that directly incorporating pre-extracted
modality features is not a suitable approach for recommendation
tasks, asmodality information contains a large amount of preference-
irrelevant noise. Through the behavior-guided purifier, the modality
noise is effectively filtered out. Only the preferences-relevant modal-
ity features would be retained. This avoids the issue of modality
noise contamination.

(2) Semantic correlation signals also have a significant impact
on recommendation performance, indicating the importance of
multi-view information encoders. Previous studies have also shown
the importance of exploiting item-item relationships, which can
effectively alleviate the data sparsity issue.

(3) The model with a behavior-aware fuser achieves better rec-
ommendation performance. That’s mainly because users have dif-
ferent modality preferences when buying different items. Although
behavior-unknown fusion mechanisms such as feature concatena-
tion can also achieve modeling of user preferences, they overlook
the fact that the importance of different modalities of items is dif-
ferent, which is not sufficient to obtain powerful representations.
Thereby leading to a suboptimal recommendation performance.

3.3.2 Effect of Modalities. To explore the contribution of each
modality to the recommendation performance, we conduct experi-
ments under different input conditions. Text includes text informa-
tion and behavior information, Visual includes visual information
and behavior information, All includes all modality information
and behavior information. As shown in Table. 3, it indicates that
both textual and visual features can improve performance, but vi-
sual features have a greater impact. We attribute this to the fact
that users tend to purchase items based on their appearance. Ad-
ditionally, text descriptions often contain irrelevant information
and can be overwhelming for users. To validate this hypothesis, we
conducted a visualization analysis in Section 3.5.

3.4 Sensitivity Analysis (RQ3)
3.4.1 Effects of the number of item neighbor 𝑘 . To avoid propa-
gating the message from the irrelevant items, we constructed the
item-item affinity graph with only the 𝑘 most similar items. Our
experiments have shown that 𝑘 = 15 is typically the most appropri-
ate value for the number of item neighbor 𝑘 . However, for the Baby
dataset, 𝑘 = 20 is more suitable. The optimal value of 𝑘 may vary
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Figure 4: Performance comparison w.r.t. different (a) num-
bers of neighbor 𝑘 and (b) weights of self-supervised task 𝜆𝐶 .

depending on the scenario, but using a smaller value can reduce
noise from unrelated neighbors.

3.4.2 Effects of the weight of self-supervised task 𝜆𝐶 . We investi-
gated the impact of self-supervised auxiliary tasks and found con-
sistent results across three datasets, as presented in Figure 4. The
results show that jointly optimizing the primary recommendation
task with a self-supervised auxiliary task leads to improvements
in performance. We found that the optimal value of 𝜆𝐶 is approxi-
mately 0.01, beyond which performance significantly declines. This
suggests that a small 𝜆𝐶 would promote the primary task. However,
when 𝜆𝐶 is too large, the model focuses excessively on the auxiliary
task, and the model is misled by the self-supervised task. Therefore,
finding a suitable auxiliary loss weight is crucial for ensuring the
effectiveness of the model’s recommendation.

3.5 Visualization Analysis (RQ4)
Intuitively, purifyingmodality information can resist modality noise
contamination. To better understand the advantages of purifying
modality information, we visualize the distribution of representa-
tions in Clothing Dataset. Figure. 5 and 6 demonstrates the impact
of the behavior-guided purifier on representation learning. In par-
ticular, we randomly sample 500 items from the Clothing dataset
and map their representations to a 2-dimensional space using t-
SNE [27]. Next, we plot the 2D feature distributions using Gaussian
kernel density estimation (KDE) [26]. For a clearer presentation,
the Gaussian kernel density estimation of 𝑎𝑟𝑐𝑡𝑎𝑛(𝑦, 𝑥) on the unit
hypersphere S1 is visualized in the bottom of each figure.

Upon analyzing the distribution of 2D features, we discovered
that rawmodality representations display multiple community clus-
ters and an uneven single peak pattern in kernel density estimation.
Directly fusing such low discriminative modality features with
behavior features would result in low distinguishability, thereby
decreasing the recommendation preference. The distribution of
textual features is more uneven than that of visual features, which
explains why using textual features is less effective than using visual
features. By purifying modality features with the aid of behavior
information, we avoid the inclusion of modality noise, resulting
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Figure 5: The distribution of representations in text modality.
The left of the figure shows the distribution of raw features,
while the right displays the distribution of purified features.
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Figure 6: The distribution of representations in visual modal-
ity. The left of the figure shows the distribution of raw fea-
tures, while the right displays the distribution of purified
features.

in enhanced discrimination of nodes’ representations. Previous re-
search [29] has demonstrated that representation uniformity is the
key factor affecting recommendation performance. It explains why
MGCN outperforms other multimedia recommendation methods.

4 RELATEDWORK
4.1 Multimedia Recommendation
Collaborative Filtering (CF) has emerged as a prominent recom-
mendation method that relies on behavior similarity to make top-k
recommendations [19, 22]. However, users’ preferences are often
influenced by multimodal information, prompting researchers to
incorporate it to improve CF-based approaches [41, 51]. Typically,
multimodal features are extracted through pre-trained neural net-
works, which are then fused with behavior features to better model
user preferences. For instance, VBPR [10] and VPOI [32] use convo-
lution neural networks (CNN) pre-trained on ImageNet to extract
deep visual features and enrich item representations. In addition to

using only visual modality, some methods incorporate multimodal
features into item representations. MDCF [44] maps multimodal
features to a consensus Hamming space for the cold-start recom-
mendation, while MV-RNN [8] uses multimodal features for sequen-
tial recommendation in a recurrent framework. However, these
methods overlook the presence of preference-irrelevant features in
modality information. Direct utilization of modality information
may contaminate the item representations.

4.2 Graph Convolution Network
As user behavior data (e.g., clicks or purchases) can be naturally rep-
resented as a bipartite graph, recent researchers have favored Graph
Convolution Network (GCN) [6, 20, 42] as a powerful tool to extract
user behavior features. Specifically, NGCF [33] captures user behav-
ior features by iteratively performing neighbor aggregation in the
user-item view. LightGCN [11] simplifies the classical graph convo-
lution module, making it more suitable for recommendation scenar-
ios. Inspired by these works, GCN-based methods have also been
applied to multimedia recommendation tasks [31, 36, 38, 39, 49]. For
example, MMGCN [39] constructs multiple GCN modules to pro-
cess different modalities, and concatenates the obtained modality
features as the final representation of items. However, the message
propagation mechanism in the GCNmodules causes modality noise
to propagate in the whole graph. Different from directly incorporat-
ing modality features, GRCN [38] and MICRO [49] adopt a graph
structure learning module to learn potential semantic structures
as a supplement to behavior information. However, not injecting
modality information is not conducive to fully exploring user pref-
erences. In addition, the graph structure learning module requires
complex graph update operations, which can be costly for large-
scale datasets. Moreover, existing methods overlook the fact that
users have varying levels of attention to different modalities when
purchasing different products, and equal treatment of each modality
feature is not sufficient to fully explore user preferences.

5 CONCLUSION
In this paper, we have proposed aMulti-ViewGraph Convolutional
Network (MGCN) for themultimedia recommendation. Specifically,
we first develop a behavior-guided purifier to avoid modality noise
contamination. Then the purified features and behavior features
are separately enriched through a multi-view information encoder.
Meanwhile, to comprehensively model user preferences, we de-
sign a behavior-aware fuser and propose a novel self-supervised
auxiliary task.

In our future work, we aim to capture user preferences by inte-
grating external knowledge with item information through large-
scale language models. We posit that the development of such
models could potentially address the cold-start problem.
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