
LD4MRec: Simplifying and Powering Diffusion Model for
Multimedia Recommendation

Penghang Yu
Nanjing University of Posts and Telecommunications

Nanjing, China
2022010201@njupt.edu.cn

Zhiyi Tan
Nanjing University of Posts and Telecommunications

Nanjing, China
tzy@njupt.edu.cn

Guanming Lu
Nanjing University of Posts and Telecommunications

Nanjing, China
lugm@njupt.edu.cn

Bing-Kun Bao∗
Nanjing University of Posts and Telecommunications

Nanjing, China
Peng Cheng Laboratory

Shenzhen, China
bingkunbao@njupt.edu.cn

ABSTRACT
Multimedia recommendation aims to predict users’ future behaviors
based on historical behavioral data and item’s multimodal infor-
mation. However, noise inherent in behavioral data, arising from
unintended user interactions with uninteresting items, detrimen-
tally impacts recommendation performance. Though the issue has
partly alleviated by previous studies, it still puzzles the existing
recommender systems. Recently, diffusion models have achieved
high-quality information generation, in which the reverse process
iteratively infers future information based on the corrupted state.
It meets the need of predictive tasks under noisy conditions, and
inspires exploring their application to predicting user behaviors (i.e.
generating behavioral information). Nonetheless, several challenges
must be addressed: 1) Classical diffusion models require excessive
computation, which does not meet the efficiency requirements of
recommendation systems. 2) Existing reverse processes are mainly
designed for continuous data, whereas behavioral information is
discrete in nature. Therefore, an effective method is needed for the
generation of discrete behavioral information.

To tackle the aforementioned issues, we propose aLightDiffusion
model forMultimedia Recommendation (LD4MRec). First, to re-
duce computational complexity, we simplify the formula of the
reverse process, enabling one-step inference instead of multi-step
inference. Second, to achieve effective behavioral information gen-
eration, we propose a novel Conditional neural Network (C-Net).
It maps the discrete behavior data into a continuous latent space,
and generates behaviors with the guidance of collaborative sig-
nals and user multimodal preference. Additionally, considering
that completely clean behavior data is inaccessible, we introduce
a soft behavioral reconstruction constraint during model training,
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Figure 1: (a) Existing diffusion models generate information
step by step from Gaussian noise. (b) Our proposed Light
diffusion model generates information in a single step from
noisy input data.

facilitating behavior prediction with noisy data. Empirical studies
conducted on three public datasets demonstrate the effectiveness
of LD4MRec, with notable robustness to noisy behaviors. The code
will be publicly available upon acceptance.

CCS CONCEPTS
• Information systems → Recommender systems; Multimedia
and multimodal retrieval.

KEYWORDS
Multimedia recommendation, Diffusion model, Controllable gener-
ation

ACM Reference Format:
Penghang Yu, Zhiyi Tan, Guanming Lu, and Bing-Kun Bao. 2024. LD4MRec:
Simplifying and Powering Diffusion Model for Multimedia Recommen-
dation. In Proceedings of the ACM Web Conference 2024, May 13-17, 2024,
Singapore. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3581783.3613915

1 INTRODUCTION
Recommender systems have attained widespread adoption in di-
verse domains [4, 30]. It recommends items of interest to users
by analyzing users’ historical behavioral data. Recognizing that
user behavior is influenced by multimodal information such as
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text and images [42, 51], recent research [2, 32, 50] has focused on
how to incorporate multimodal data to enhance recommendation
performance.

Early recommender research was dominated by matrix factor-
ization methods [13] that predicted user preferences by analyzing
the interaction matrix. A common approach involved deriving user
multimodal preferences from textual and visual data to enhance
predictions of behavioral information [8, 48]. Since user interaction
data can be naturally represented as a bipartite graph, this led to the
emergence of Graph Convolutional Network (GCN)-based methods
in recent years [16, 39, 40, 47]. GCN-based methods are capable
of capturing high-order collaborative signals within behavioral
information [9, 38], enabling more effective modeling of user pref-
erences. However, historical behavioral data often contains noise
in the form of false positives and false negatives [36]. For example,
a user may click an item but find it uninteresting after consuming
it [41]. This results in suboptimal user preference modeling. To
address this issue, several self-supervised learning (SSL) methods
[33, 53] have been proposed. They introduce additional pretext
task that maximize the agreement between representations under
different perturbations, aiming to enhance robustness to such noise.
While they have partially alleviated the problem, the inherent noise
issue remains unresolved.

In recent years, diffusion models have achieved remarkable suc-
cess in computer vision (CV) [22, 29] and natural language pro-
cessing (NLP) [1, 14]. Diffusion models mainly consist of forward
and reverse processes [10, 36]. The forward process corrupts the
input data by adding noises step by step in a Markov chain. The re-
verse process learns to infer the future state based on the corrupted
data. Since recommender models aim to infer user future behaviors
based on corrupted historical interactions, the reverse process in
diffusion model perfectly meets the need of recommender systems
[37]. This suggests that exploring the use of diffusion models in
recommendation holds great potential. However, it presents two
distinct challenges. Firstly, recommender systems must handle mas-
sive volumes of data while maintaining timeliness at a high level.
To make diffusion models feasible in multimedia recommendation
scenarios, significant reductions in computational complexity are
essential. Secondly, existing reverse processes are mainly designed
for continuous data. Unlike data in CV/NLP tasks, behavioral data
in recommendation systems is discrete [41]. It poses a significant
challenge in effectively generating behavioral information.

To address the above challenges, we propose a Light Diffusion
model forMultimedia Recommendation (LD4MRec). On the one
hand, to reduce computational complexity, we simplify the reverse
process to enable one-step inference instead of multi-step inference.
On the other hand, we propose a novelConditional neuralNetwork
(C-Net) to effectively generate behavior information. The design
of C-Net is inspired by previous studies [31, 37] that utilize a map-
ping of discrete data to a continuous latent space before generation.
Specifically, C-Net initially maps sparse and discrete behavioral
information to a continuous latent space. It then performs denois-
ing operations on noisy behavioral data and generates potential
behaviors. To better align generated data with user interests, C-Net
incorporates collaborative signals andmulti-modal user preferences
as guiding signals. The outputs are finally remapped to the discrete

space as predicted behaviors. Additionally, considering the inac-
cessible of completely clean behavioral data, we introduce a soft
behavioral reconstruction constraint during model training. This
constraint facilitates behavior prediction in the presence of noisy
data. Empirical studies conducted on three benchmark datasets
demonstrate the effectiveness of LD4MRec, with notable robust-
ness to noisy behaviors.

Our main contributions can be summarized as follows:

• We simplify and power diffusion model for multimedia rec-
ommendation, which achieves one-step inference instead of
multi-step inference. To the best of our knowledge, this is
the first attempt to introduce diffusion models in multimedia
recommender systems.

• We develop a novel C-Net to generate user behavior infor-
mation. It can effectively generation with the guidance of
the collaborative signals and user multimodal preference.

• Extensive experiments on three public datasets demonstrate
that the proposed LD4MRec outperforms existing multime-
dia models, particularly in terms of its robustness against
interaction noises.

2 LIGHT DIFFUSION MODEL
2.1 Problem Definition
Let U represent the set of users and I represent the set of items.
We define the modality features of items as E𝑚 ∈ R𝑑𝑚×|𝐼 | , where
𝑑𝑚 denotes the dimension of the features. Here,𝑚 ∈ M represents
the modality, andM is the set of modalities. In this study, we focus
primarily on two modalities: visual and textual. It is important to
note that our method can be extended to accommodate multiple
modalities.

Furthermore, we use R to represent the historical behavior data
of the users, which can be described as a matrix of size |U| × |I|
with entries in {0, 1}. Specifically, if user 𝑢 has clicked on item 𝑖 ,
we set R𝑢,𝑖 = 1; otherwise, R𝑢,𝑖 = 0. The objective of multimedia
recommendation is to accurately predict user future interaction
probabilities 𝑦𝑢𝑖 based on observed historical interactions.

2.2 Forward and Reverse Processes
Normally, diffusionmodels consist of forward and reverse processes.
The forward process corrupts the input data by adding noises step
by step in a Markov chain. The reverse process learns to recover
the input data iteratively.
• Forward process. Given a user 𝑢 and their interaction history
over an item set 𝒓𝑢 , we consider the presence of noise and define the
input state 𝒙in as 𝒓𝑢 with a learnable input time representation 𝑡in.
𝒙0 represents the ideal state without noise. 1 It is important to note
that the input time behavior exhibits minimal noise, which allows
us to assume that 𝑡in approximates 𝑡0. In other words, during the
forward process, we can reasonably approximate the representation
as 𝒙in from 𝑡0 to 𝑡in, while considering only the reconstruction of
𝒙0 from 𝒙in in the reverse process.

During the forward process, the transition is parameterized as
follows:

1For brevity, we omit the subscript 𝑢 in 𝑡in , 𝒙0 , and 𝒙in for user 𝑢.
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𝑞(𝒙𝑡 |𝒙𝑡−1) = N(𝒙𝑡 ;
√︁

1 − 𝛽𝑡𝒙𝑡−1, 𝛽𝑡 𝑰 ), (1)

Here,N(𝑥 ; 𝜇, 𝜎2) is a Gaussian distribution with a mean 𝜇 and
variance 𝜎2, 𝒙𝑡 is sampled from this Gaussian, 𝛽𝑡 is the noise added
at the 𝑡-th diffusion step and 𝑰 is the identity matrix. The value of
𝛽𝑡 is generated from a pre-defined noise schedule 𝛽 controlling the
scale of Gaussian noise added at each step 𝑡 .

By utilizing the reparameterization trick [10] and the additiv-
ity property of two independent Gaussian noises [10, 19], we can
directly obtain 𝒙𝑡 from 𝒙in. This can be formalized as:

𝑞(𝒙𝑡 |𝒙in) = N(𝒙𝑡 ;
√
𝛼𝑡𝒙in, (1 − 𝛼𝑡 )𝑰 )

=
√
𝛼𝑡𝒙in +

√
1 − 𝛼𝑡𝜖, 𝜖 ∼ N(0, 𝑰 ),

(2)

where 𝛼𝑡 = 1 − 𝛽𝑡 , 𝛼𝑡 =
∏𝑛

𝑖=1 𝛼𝑖 .
Since 𝛼𝑡 represents a predefined noise schedule devoid of any

learnable parameters, we can effectively control 𝒙𝑡 by establishing
an appropriate 𝛽𝑡 . Various noise schedules commonly employed
include square-root [14], cosine [10], and linear [23]. In light of
the limited availability of user behavior data in recommendation
scenarios, we aim to prevent excessive degradation of behavior-
related information by regulating the extent of noise introduced in
𝒙𝑖𝑛:𝑇 , as proposed byWang [37]. To this end, a linear noise schedule
is employed for 1 − 𝛼𝑡 , which can be expressed as follows:

1 − 𝛼𝑡 = 𝑠 ·
[
𝛼min + 𝑡 − 1

𝑇 − 1
(1 − 𝛼min)

]
, 𝑡 ∈ 1, . . . ,𝑇 . (3)

Here, 𝑠 ∈ [0, 1] serves as a hyperparameter governing the magni-
tude of the noise, while 𝛼min ∈ (0, 1) is a hyperparameter indicating
the minimum level of noise to be added. The variable𝑇 denotes the
total number of diffusion steps.
• Reverse process. Diffusion models commonly employ an itera-
tive approach to approximate the true representation 𝒙0 by elimi-
nating added noises from 𝒙𝑡 to 𝒙𝑡−1. This iterative process involves
a sequence of transformations, progressing from 𝒙𝑡 to 𝒙𝑡−1 until
𝒙𝑡 ultimately converges to 𝒙0 (i.e. 𝒙𝑡 → 𝒙𝑡−1 →, ..., 𝒙in → 𝒙0). To
compute the subsequent denoised representation 𝒙𝑡−1 given the
current representation 𝒙𝑡 , the following procedure is employed:

𝑝𝜃 (𝒙𝑡−1 |𝒙𝑡 ) = N (𝒙𝑡−1; 𝝁𝜃 (𝒙𝑡 , 𝑡), 𝚺𝜃 (𝒙𝑡 , 𝑡)) , (4)

where 𝝁𝜃 (𝒙𝑡 , 𝑡) and 𝚺𝜃 (𝒙𝑡 , 𝑡) denote the Gaussian parameters out-
putted by a neural network with learnable parameters 𝜃 .

Throughout the process of training the model, the optimiza-
tion of diffusion models aims to enforce the approximation of the
tractable distribution 𝑞(𝒙𝑡−1 |𝒙𝑡 ) by 𝑝𝜃 (𝒙𝑡−1 |𝒙𝑡 ) using the KL di-
vergence. And the closed form expression of 𝑞(𝒙𝑡−1 |𝒙𝑡 ) can be
derived, as demonstrated in a previous study [19]:

𝑞(𝒙𝑡−1 |𝒙𝑡 ) ∝ N (𝒙𝑡−1; �̃� (𝒙𝑡 , 𝑡), 𝜎2 (𝑡)𝑰 ), where (5)


�̃� (𝒙𝑡 , 𝑡) =

1
√
𝛼𝑡

(𝒙𝑡 −
1 − 𝛼𝑡√
1 − 𝛼𝑡

𝜖𝑡 ),

𝜎2 (𝑡) = (1 − 𝛼𝑡 ) (1 − 𝛼𝑡−1)
1 − 𝛼𝑡

.

(6)

The mean and covariance of the distribution 𝑞(𝒙𝑡−1 |𝒙𝑡 ), denoted
as �̃� (𝒙𝑡 , 𝑡) and 𝜎2 (𝑡)𝑰 respectively. They are derived from Eq. (1)
and Eq. (2) [10].

Normally, conventional diffusion models establish a neural net-
work to estimate the noise 𝜖𝑡 at each step, thereby predicting the
initial state through multi-step inference [5, 14]. However, unlike
CV and NLP tasks, sparse behavioral data contains less information,
multi-step inference becomes inefficient and burdens the training
of the model [37]. To address this issue, we utilize Bayes’ rule to
simplify the calculation of the mean, thus achieving one-step infer-
ence:

𝝁𝜃 (𝒙𝑡 , 𝑡) =
√
𝛼𝑡 (1 − 𝛼𝑡−1)

1 − 𝛼𝑡
𝒙𝑡 +

√
𝛼𝑡−1 (1 − 𝛼𝑡 )

1 − 𝛼𝑡
�̂�𝜃 (𝒙𝑡 , 𝑡). (7)

Thenwe can instantiate �̂�𝜃 (·) via a neural network, which predicted
𝒙0 based on 𝒙𝑡 and 𝑡 . In other words, this formulation enables the
one-step prediction of the state at any given time, as the diffusion
process exhibits Markovian properties.

The task of recommendation is distinct from conventional gener-
ation tasks due to its primary objective of satisfying user interests.
The ultimate goal of a recommender system is to predict items
that meet user preference, which requires the implementation of a
controllable diffusion model centered around user feedback. Conse-
quently, we introduce modality information denoted as𝑚 as the
control signal, which can reflect users’ multimodal preferences. The
ultimate expression for predicting 𝒙0 is presented below:

𝑝𝜃 (𝒙0 |𝒙𝑡 , 𝒙in, 𝑡,𝑚) = N (𝒙in; 𝝁𝜃 (𝒙𝑡 , 𝒙in, 𝑡,𝑚), 𝚺𝜃 (𝒙𝑡 , 𝒙in, 𝑡,𝑚) ) .
(8)

𝝁𝜃 (𝒙𝑡 , 𝑡,𝑚) =
√
𝛼𝑡 (1 − 𝛼𝑡−1 )

1 − 𝛼𝑡
𝒙𝑡 +

√
𝛼𝑡−1 (1 − 𝛼𝑡 )

1 − 𝛼𝑡
�̂�𝜃 (𝒙𝑡 , 𝑡,𝑚),

𝜎2 (𝑡 ) = (1 − 𝛼𝑡 ) (1 − 𝛼𝑡−1 )
1 − 𝛼𝑡

.

(9)

To effective address the discrete and interconnected nature of
behavioral data, we propose and detail the C-Net in Section. 3. It
is designed to fit 𝝁𝜃 (𝒙𝑡 , 𝑡,𝑚), allowing effective and controllable
denoising.

2.3 Efficient Training and Inference
• Training. Diffusion models undergo training using the Mean
Square Error (MSE) loss, which measures the discrepancy between
the sampled mean 𝜇𝑛 and the predicted mean 𝜇𝜃 [10].

Lmse = E𝑞 (𝒙𝑡 |𝒙in ) ∥ �̃� (𝒙𝑡 , 𝒙in, 𝑡) − 𝝁𝜃 (𝒙𝑡 , 𝑡, condition) ∥2
2, (10)

where 𝝁𝑛 (𝒙𝑡 , 𝒙in) represents the sampled mean as defined in Eq. 6.
In light of the presence of inherent noise in the input behavior

data, we have introduced a modification to the MSE loss function
by drawing inspiration from soft labels [17, 21]. This modification
has led to the proposal of a soft behavior reconstruction constraint
denoted as Lrec:

Lrec = E𝑞 (𝒙𝑡 | 𝑓s (𝒙in ) ) ∥ �̃� (𝒙𝑡 , 𝑓s (𝒙in), 𝑡) − 𝝁𝜃 (𝒙𝑡 , 𝑡, condition) ∥2
2,
(11)

Specifically, for a given set of input behavior data 𝒙in, we sample
two subsets, S+ and S− , with a probability of 𝑝 . The subset S+

represents the items that have been clicked on by the user and are
thus labeled as 1, while the subset S− represents the items that
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Algorithm 1 Efficient Training

Input: All users’ interactions R, all items’ modality features
{E𝑚}𝑚∈M and randomly initialized 𝜃 .

1: repeat
2: for a minibatch R̂ ⊂ R do
3: Sample a diffusion step 𝑡 ∼ 𝑝𝑡 ,
4: Sample random Gaussian noise 𝝐 ∼ N(0, 𝑰 );
5: // Forward Process
6: Compute 𝒙𝑡 via 𝑞(𝒙𝑡 |𝒙in) in Eq. 2)
7: // Reverse Process
8: Predict 𝒙0 via 𝑝𝜃 (𝒙0 |𝒙𝑡 , 𝒙in, 𝑡,𝑚) in Eq. 8
9: // Optimization
10: Calculate L(𝒓𝑢 ) via Eq. 13
11: Take gradient descent step on ∇𝜃L(𝒓𝑢 ) to optimize 𝜃
12: // Dynamic Update
13: Update the history value for Lrec (𝒓𝑢 )
14: end for
15: until Converged
Output: Optimized 𝜃 .

have not been clicked on and are labeled as 0. Then the sequential
smoothing operation is performed, as shown below:

𝑓s (𝑥) =
{

1 − 𝛾, 𝑥 ∈ S+,

𝛾, 𝑥 ∈ S−,
(12)

where the hyperparameter 𝛾 is employed to control the intensity
of the smoothing effect.

Furthermore, when the forward diffusion step 𝑡 is relative small,
the introduction of noise to the input representation 𝒙in is mini-
mal, allowing the model to effortlessly restore 𝒙in. Conversely, as 𝑡
approaches the total diffusion step 𝑇 , the denoising of 𝒙𝑡 becomes
increasingly challenging due to its similarity to Gaussian noise. It
is intuitive to allocate more training steps to more difficult samples,
as this enhances the denoising capability. Therefore, we utilize the
technique of importance sampling [23] to incentivize the inclusion
of harder samples. The weighted loss function L(𝒓𝑢 ) is defined as
follows:

L(𝒓𝑢 ) = E𝑛∼𝑝𝑡
[
Lrec (𝒓𝑢 )

𝑝𝑡

]
, 𝑝𝑡 ∝

√︁
E[Lrec (𝒓𝑢 )2 ],

𝑇∑︁
𝑡=1

𝑝𝑡 = 1,

(13)
where 𝑝𝑡 represents the probability of sampling the diffusion step 𝑡 .
AsE[Lrec (𝒓𝑢 )] may change during training, we dynamically record
the value of each Lrec (𝒓𝑢 ) and update the record history accord-
ingly. Before acquiring enough Lrec (𝒓𝑢 ), we still adopt the uniform
sampling. Based on the aforementioned designs, we summarize our
training strategy in Algorithm 1.
• Inference. Diffusion models typically employ a reverse gener-
ation process, which involves drawing random Gaussian noises
[7, 28]. These noises can be guided by gradients obtained from a
pre-trained classifier or other signals, such as textual queries. How-
ever, the conversion of meaningful interactions into pure noise can
have a detrimental impact on the customization of user preferences
in recommendation systems [37]. In order to tackle this issue, dur-
ing the inference stage, we directly initiate the reverse process from
the input 𝒙in to reconstruct the original state 𝒙0. This approach

Algorithm 2 Efficient Inference

Input: Interaction 𝒓𝑢 of user 𝑢, all items’ modality features
{E𝑚}𝑚∈M and trained parameters 𝜃 .

1: Sample random Gaussian noise 𝝐 ∼ N(0, 𝑰 );
2: // Reverse Process
3: Predict 𝒙0 given 𝒙in (i.e. 𝒓𝑢 ) via 𝑝𝜃 (𝒙0 |𝒙𝑡 , 𝒙in, 𝑡,𝑚) in Eq. (8)

Output: the interaction probabilities 𝒙0 for user 𝑢.

allows for deterministic inference by disregarding the introduction
of variance, similar to the methodology employed in MultiVAE [15].
The inference procedure is summarized in Algorithm 2.

3 C-NET
3.1 Overview
In order to promote the denoised behavioral information is close to
similar users’ information, we first distill collaborative signals with
collaborative encoder from the global perspective. In this study, we
employ the SVD [11] scheme as the encoder due to its efficient and
effective capturing of collaborative signals. Additionally, similar to
other multimedia recommendation approaches [47, 49], the modal-
ity features of items can be distilled using a pre-trained modality
information encoder (i.e. VGG-16, Sentence2Vec, etc.). Next, the
user’s modality preference can be captured by weighted aggregat-
ing the modality information of clicked items through a lightweight
GCN module [47]. The aggregation process can be represented as
follows:

e𝑢,𝑚 =
∑︁
𝑖∈N𝑢

1√︁
|N𝑢 | |N𝑖 |

e𝑖,𝑚, (14)

where e𝑢,𝑚 denotes the𝑚 modality preference of user 𝑢, e𝑖,𝑚 rep-
resents the 𝑚 modality features of item 𝑖 , N𝑢 indicates the set
of clicked items by the user 𝑢, and N𝑖 denotes the set of users
who clicked item 𝑖 . And the forward diffusion step embedding
z𝑡 ∈ R𝑑 (1≤𝑡≤𝑇 ) is obtained by the sinusoidal function [34]:

z𝑡 (2 𝑗) = sin(𝑛/100002𝑗/𝑑 ),

z𝑡 (2 𝑗 + 1) = cos(𝑛/100002𝑗/𝑑 ), 0≤ 𝑗<𝑑/2
(15)

where 2 𝑗 and 2 𝑗 + 1 represent the dimension. Meanwhile, the learn-
able 𝑧in represents the data input time 𝑡in for each user.

After the forward process, the input of noisy user behavior data
𝒙𝑡 is fed into the C-Net, where it undergoes transformation into a
continuous latent space via a fully connected layer. Subsequently,
a sequence of cascaded BD-Blocks and BI-Blocks is employed to
accomplish the generation of behaviors with the guidance of collab-
orative signals and user multimodal preference. Finally, the ultimate
representation is mapped back to the original discrete behavior
space using another fully connected layer. The overall framework
of LD4MRec is presented in Figure 2. To maintain simplicity, we
have omitted the depiction of nonlinear activation functions be-
tween the BD-Blocks and BG-Blocks.

3.2 Behavior Denoising Block
For the behavioral information after the forward denoising pro-
cess, we proceed to denoise the behavioral information and utilize
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Figure 2: (a) The overall framework. (b) BD-Block denoises the representations with the guidance of collaborative signals. (c)
BG-Block generate behavior information under the control of user multimodal preferences.

collaborative signals to generate initial information. When the for-
ward diffusion step is relatively small, the behavioral information
incorporates little noise. Consequently, we expect the model to
capture user personalized behavior information for noise removal.
Conversely, a larger step size results in increased noise levels and in-
complete behavioral information. In such cases, we guide the model
to eliminate noise and generate possible behavioral information by
incorporating collaborative signals.

Specifically, the behavioral representation is first concatenated
with the representation of forward time to carry out the preliminary
denoising operation:

b′𝑢 = 𝜎 (W1b𝑢 + b1). (16)

In the above equation, b𝑢 ∈ R𝑑 represents a dense representation
obtained by mapping 𝑥0 through a feedforward layer. The parame-
ters involved in this operation are W1 ∈ R𝑑×𝑑 and b1 ∈ R𝑑 , which
are learnable. Here, 𝑑 denotes the dimension of the hidden layer,
and 𝜎 corresponds to the activation function.

Meanwhile, the collaborative signals are mapped to the same
latent space through an independent feedforward neural network
as supplementary information:

c′𝑢 = 𝜎 (W2c𝑢 + b2) . (17)

In the above equation, c𝑢 ∈ R𝑑svd represents the pre-encoded col-
laborative representation of user 𝑢. The parameters involved in this
operation areW1 ∈ R𝑑×𝑑svd and b1 ∈ R𝑑 , which are learnable.

Then, under the control of forward diffusion time, the denoised
behavioral features and collaborative information are adaptively
fused:

b𝑢,𝑑 = b′𝑢 ⊙ (1 − 𝑔(𝑡𝑓 )) + c′𝑢 ⊙ 𝑔(𝑡𝑓 ) (18)
𝑔(𝑡𝑓 ) = 𝜎 (W3𝑡𝑓 + b3) (19)

where 𝑔(𝑡𝑓 ) is the gating function, W3 ∈ R𝑑×𝑑 and b3 ∈ R𝑑 are
learnable parameters, ⊙ represents the element-wise product and 𝜎
is the sigmoid nonlinearity. 𝑡𝑓 represents the overall forward time
representation:

𝑡𝑓 =

{
𝑡 + 𝑡in, 𝑖 𝑓 training,

𝑡in, 𝑖 𝑓 inference,
(20)

Under the control of time representation, BD-Block adeptly
merges the information originating from two branches and effec-
tively performs initial denoising.

3.3 Behavior Generating Block
Given the frequent association between user behavior and their
multimodal preferences, we fuse behavior information with their
multimodal preferences. To achieve this, we propose a novel Be-
havior Generating Block (BD-Block), which is designed to facilitate
the generation of behavior that maximizes alignment with user
preferences.
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Table 1: Statistics of the experimental datasets

Dataset #User #Item #Behavior (C) #Behavior (N)

Baby 19,445 7,050 160,792 176,870
Sports 35,598 18,357 296,337 325,970

Electronics 192,403 63,001 1,689,188 1,858,106

More specifically, inspired by the text2image task [22, 31], we
employ a sequential process to generate behavioral information,
utilizing both text preference control and image preference control.
Taking the generation of behavioral information controlled by text
preference as an example, we first utilize two Multilayer Percep-
trons (MLPs) to predict the parameters W𝑡 for text-conditioned
feature transformation and the shifting parameters b𝑡 based on the
user’s text preference t𝑢,𝑡 , respectively:

W𝑡 = 𝑀𝐿𝑃1 (t𝑢,𝑡 ), b𝑡 = 𝑀𝐿𝑃2 (t𝑢,𝑡 ). (21)

Next, we perform a feature transformation operation on the
given input behavior feature b𝑢,𝑑 using the transformation parame-
ter W𝑡 . Additionally, we apply the channel-wise shifting operation
with the shifting parameter b𝑡 . This process can be mathematically
represented as:

b′
𝑢,𝑑

= W𝑡b𝑢,𝑑 + b𝑡 . (22)

The process of generating behaviors under image preference
control follows a similar approach. However, the above generation
process is a linear transformation process, it hinders the effective-
ness of behavior generation. To address this limitation, we introduce
a LeakyReLU layer between text preference-conditioned genera-
tion and image preference-conditioned generation. This inclusion
introduces nonlinearity into the generation process, expanding the
conditional representation space. By enlarging the representation
space, we facilitate the mapping of diverse behavior information to
distinct representations based on modality preference.

4 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the
performance of the proposed LD4MRec model on three public
datasets. The following four questions can bewell answered through
experiment results:
• RQ1: How does LD4MRec perform compared to the baselines
under various experimental settings?
• RQ2: How do the designs of LD4MRec affect the performance?
• RQ3: How does different hyper-parameter settings impact the
results of the LD4MRec model?

4.1 Experimental Settings
4.1.1 Dataset. In line with prior studies [49, 53], we employ the
Amazon review dataset for our experimental assessment. In order
to facilitate the evaluation of numerous baseline approaches on
extensive datasets, we select three datasets per category, namely
Baby, Sports and Outdoors (referred to as Sports), and Electronics
(referred to as Elec). The descriptive statistics of these datasets can
be found in Table.1. Consistent with Zhou[53], we utilize the pre-
extracted visual features with 4,096 dimensions and text features
with 384 dimensions, which were previously published in [52].

For all datasets, we consider two different experimental settings
in accordance with prior works [37, 41]. (1) Clean training. It
first excludes user interactions with ratings < 4. Subsequently, the
remaining interactions are sorted and divided into training, vali-
dation, and testing sets at a ratio of 8:1:1. (2) Noisy training. It
employs the same testing set as the clean training. However, it intro-
duces additional noisy interactions into the training and validation
sets. These noisy interactions consist of both natural noises (i.e.,
interactions with ratings < 4) and randomly sampled interactions.

4.1.2 Compared Methods. To evaluate the effectiveness of our pro-
posed model, we compare it with several representative recommen-
dation models. These baselines fall into two groups: General models,
which only rely on interactive data for recommendation; Multime-
dia models, which utilize both interactive data and multi-modal
features for the recommendation.
i) General Models:We have selected some of the most representa-
tive models as our compared methods, including MF-based methods
(MF-BPR [13]), GCN-based methods (LightGCN [9]), Diffusion-
based methods (DiffRec [37]) and Self-Supervised Learning (SSL)-
based methods (SimGCL [46]).
ii) Multimedia Models: To enhance the evaluation of our ap-
proach, we selected some competitive models as our compared
methods. This encompasses techniques such as MF-based methods
(VBPR [8]), GCN-based methods (MMGCN [40], LATTICE [49],
MGCN [47]) and SSL-based methods (SLMRec [33], BM3 [53]).

4.1.3 Evaluation Protocols. To ensure a a fair comparison, we ad-
here to the standardized all-ranking protocol [47, 53] when as-
sessing the performance of top-K recommendations. We calculate
and present the average metrics, namely Recall@𝐾 (R@𝐾) and
NDCG@𝐾 (N@𝐾), for all users in the test set. Our study encom-
passes over ten experiments, and the reported values represent their
average outcomes. The statistical significance of the improvements
over the best baseline is indicated by the 𝑝-value.

4.1.4 Implementation Details. We have implemented the proposed
model and all the baseline models using the PyTorch framework
[25]. To ensure a fair comparison, we have optimized all themethods
using the Adam optimizer and referred to the optimal hyperparam-
eter settings mentioned in the original baseline papers. To ensure
convergence, we have employed early stopping after 20 epochs and
a total of 1000 epochs. Following the approach described in [50],
we have utilized Recall@20 on the validation data as the indicator
for stopping the training process.

4.2 Overall Performance (RQ1)
The performance comparison results are presented in Table 2 for
clean training and in Table 3 for noisy training. Several key obser-
vations can be made from these tables:

(1) When trained with clean data, the diffusion model exhibits
significantly improved performance compared to mainstream meth-
ods, and even outperforms the current best GCN-based method.
This superior performance can be attributed to the alignment be-
tween generative modeling and real-world behavior generation
procedures. Moreover, the diffusion model leverages multimodal
preference information to ensure controllable generation, leading
to effective personalized user behavior prediction.
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Table 2: Performance Comparison of Different Recommendation Models (Clean Training)

Baby Sports Electronics
Methods R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

MF-BPR 0.0357 0.0575 0.0192 0.0249 0.0432 0.0653 0.0241 0.0298 0.0235 0.0367 0.0127 0.0161
LightGCN 0.0479 0.0754 0.0257 0.0328 0.0569 0.0864 0.0313 0.0387 0.0363 0.0540 0.0204 0.0250
DiffRec 0.0497 0.0774 0.0263 0.0339 0.0603 0.0900 0.0331 0.0408 0.0392 0.0572 0.0224 0.0270
SimGCL 0.0498 0.0783 0.0269 0.0342 0.0624 0.0919 0.0346 0.0414 0.0409 0.0585 0.0229 0.0281

VBPR 0.0423 0.0663 0.0223 0.0284 0.0558 0.0856 0.0307 0.0384 0.0293 0.0453 0.0159 0.0202
MMGCN 0.0378 0.0615 0.0200 0.0261 0.0370 0.0605 0.0193 0.0254 0.0207 0.0331 0.0109 0.0141
SLMRec 0.0540 0.0810 0.0285 0.0357 0.0676 0.1017 0.0374 0.0462 0.0422 0.0630 0.0237 0.0291
LATTICE 0.0544 0.0848 0.0291 0.0369 0.0618 0.0947 0.0337 0.0422 - - - -

BM3 0.0564 0.0883 0.0301 0.0383 0.0656 0.0980 0.0355 0.0438 0.0437 0.0648 0.0247 0.0302
MGCN 0.0620 0.0964 0.0339 0.0427 0.0729 0.1106 0.0397 0.0496 0.0442 0.0650 0.0246 0.0302

LD4MRec 0.0645 0.0981 0.0348 0.0437 0.0743 0.1115 0.0403 0.0502 0.0450 0.0662 0.0254 0.0311
𝑝-value 6.17e-6 6.24e-6 1.81e-5 1.87e-5 4.33e-6 4.67e-6 1.67e-5 1.79e-5 6.47e-6 6.61e-6 1.80e-5 1.88e-5

‘-’ indicates the model cannot be fitted into a Tesla V100 GPU card with 32 GB memory.

Table 3: Performance Comparison of Different Recommendation Models (Noisy Training)

Baby Sports Electronics
Methods R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

BM3 0.0500 0.0819 0.0265 0.0347 0.0562 0.0865 0.0307 0.0385 0.0383 0.0574 0.0213 0.0262
MGCN 0.0535 0.0843 0.0292 0.0365 0.0626 0.0932 0.0338 0.0418 0.0397 0.0598 0.0224 0.0267

LD4MRec 0.0602 0.0931 0.0328 0.0413 0.0709 0.1083 0.0379 0.0481 0.0418 0.0620 0.0236 0.0288
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Figure 3: Performance comparison between different variants
of LD4MRec. (Blue: w/o BG, Light Blue: w/o BD, Yellow: w/o
SR, Orange: LD4MRec)

(2) In the presence of noisy data, diffusion models demonstrate
effective resistance against noise pollution, surpassing both SSL-
based and GCN-based methods. This suggests that the denoising
training employed by the diffusion model enhances its representa-
tion ability, resulting in robustness. Given that practical application
scenarios often involve user interactions with noise, the utiliza-
tion of diffusion models for multimedia recommendation holds
significant potential.

4.3 Ablation Study (RQ2)
In our effort to elucidate the impact of key components within
LD4MRec, we established several model variants:

• w/o BG: For this variant, we exclude behavior generating block
and instead sequentially link the two Behavior Denoising blocks.
• w/o BD: In this variant, the behavior denoising block is elimi-
nated. Much like DiffRec [37], we concatenate behavior information
and time representations directly, and then pass them through a
multilayer perceptron (MLP) layer to fit the reverse process.
• w/o SR: In this variant, we have omitted the soft reconstruction
loss, choosing to employ Mean Squared Error (MSE) loss for the
model’s training process.

Our study yielded the following findings:
(1) Upon the removal of multimodal information, there is a no-

table decrease in performance. This aligns with the intuitive under-
standing, given that user behavior is frequently influenced by item
multimodal information. Guided by user multimodal preferences,
LD4MRec can generate behavioral data more precisely to align with
user personalized preferences.

(2) Across the three datasets, models w/o BD underperform, un-
derscoring the substantial contribution of collaborative information
to behavioral denoising. By adaptively fusing collaborative and be-
havior information, the model achieves a balance between focusing
on similar users’ information and its own information.

(3) The elimination of soft reconstruction constraint leads to
a dip in performance. This can be chiefly attributed to the fact
that, at the initial stage, user behavior contain a certain level of
noise. Consequently, the input state deviates from the ideal zero
moment, introducing some drift. It is not logical to insist that the
generated behavior information fully aligns with historical behavior
information, as this could misguide the model in its attempt to
model user preferences. Contrarily, smoothing historical behavior



WWW ’24, May 13-17, 2024, Singapore Penghang Yu, Zhiyi Tan, Guanming Lu, & Bing-Kun Bao

0.0
05 0.0

1
0.0

5 0.1 0.2 0.3

0.090

0.095

0.100

0.105

0.110

Recall@20

0.0
05 0.0

1
0.0

5 0.1 0.2 0.3

0.040

0.042

0.044

0.046

0.048

0.050

NDCG@20

Figure 4: Performance comparison w.r.t. different 𝑝 and 𝛾 .

0.0001 0.001 0.01 0.1 1
s

0.
5

0.
1

0.
05

0.
01

0.
00
5

α m
in

0.1057 0.1081 0.1074 0.1069 0.0937

0.1092 0.1100 0.1111 0.1019 0.0978

0.1083 0.1078 0.1115 0.1096 0.1035

0.1106 0.1094 0.1070 0.1050 0.1063

0.1074 0.1092 0.1089 0.0991 0.0949

Recall@20

0.0001 0.001 0.01 0.1 1
s

0.
5

0.
1

0.
05

0.
01

0.
00
5

α m
in

0.0475 0.0479 0.0480 0.0472 0.0402

0.0486 0.0493 0.0495 0.0450 0.0427

0.0484 0.0479 0.0502 0.0490 0.0463

0.0493 0.0491 0.0478 0.0462 0.0465

0.0479 0.0487 0.0482 0.0434 0.0408

NDCG@20

0.0960

0.1000

0.1040

0.1080

0.1120

0.0400

0.0420

0.0440

0.0460

0.0480

0.0500

Figure 5: Performance comparison w.r.t. different 𝑠 and 𝛼𝑚𝑖𝑛 .

can encourage the model to extract more invariant user preferences
from the noisy data.

4.4 Sensitivity Analysis (RQ3)
4.4.1 Analysis of soft behavior reconstruction constraint. To facili-
tate the effective learning of the model from noise, we devise a soft
reconstruction loss. Furthermore, we perform sensitivity analysis
experiments and determine that optimal outcomes are obtained
when the soft probability 𝑝 is set to 0.01, and the smoothing inten-
sity𝛾 is set to 0.01. Excessive values for either the soft probability or
smoothing intensity can result in the loss of behavior information,
leading to suboptimal results.

4.4.2 Analysis of the noise in the forward process. To investigate
how the noise in the forward process affects the performance, we
consider the variants of LD4MRec that use different noise scale
𝑠 and the minimum level of noise 𝛼𝑚𝑖𝑛 . Figure. 5 demonstrates
that the model achieves optimal performance when 𝑠 is set to 0.01
and 𝛼𝑚𝑖𝑛 is set to 0.05. And we find that the efficacy of the model
is closely linked to the introduction of noise during the forward
process. That is to say, excessive noise may disrupt personalized
behavioral information, while insufficient noise can impede the
model’s capability, rendering it unable to achieve satisfactory rec-
ommendation performance.

5 RELATEDWORK
5.1 Multimedia Recommendation
Collaborative filtering has emerged as a prominent approach for
generating top-k recommendations by leveraging behavior simi-
larity [20, 24]. Considering that users’ preferences are often influ-
enced by multimodal information, researchers have been prompted
to incorporate such information in order to enhance collaborative
filtering (CF)-based approaches [42, 51]. Typically, multimodal fea-
tures are extracted using pre-trained neural networks and then
combined with behavior features to more effectively model user
preferences. For instance, VBPR [8] utilizes convolutional neural
networks (CNNs) pre-trained on ImageNet to extract deep visual
features and enrich item representations. Given that user behavior
data, such as clicks or purchases, can be naturally represented as a
bipartite graph, recent studies have favored the adoption of Graph
Convolution Networks (GCNs) as a powerful tool for extracting user
behavior features [3, 45]. To handle different modalities, MMGCN
[40] constructs multiple GCN modules and concatenates the result-
ing modality features to obtain the final representation of items.
Additionally, LATTICE [49] and MGCN [47] exploit hidden asso-
ciative signals using an additional item-item graph to enhance user
preference modeling. Nevertheless, GCN-based methods often ex-
hibit a heavy reliance on historical behavioral information. It leads
to noise in behavioral information may mislead user preference
modeling. To address this issue, several self-supervised learning
(SSL) methods (SLMRec [33], BM3 [53]) have been proposed. These
methods introduce additional self-supervised learning tasks that
maximize the representation under two perturbations, aiming to en-
hance robustness. While they have partially alleviated the problem,
the inherent flaw remains unresolved.

5.2 Diffusion models
Diffusion models have demonstrated considerable success in the
generation tasks of continuous data domains [5, 12, 22, 23], no-
tably in image synthesis. This success has prompted a number of
studies to explore the application of diffusion models to discrete
data domains, such as text generation [6, 14]. Diffusion-LM [14]
represents the pioneering effort in adapting continuous diffusion
models for more refined control in discrete-oriented tasks. Subse-
quently, DiffuSeq [6] has extended the applicability of these models
to accommodate a broader range of sequence-to-sequence tasks.

Despite the widespread application of diffusion models in var-
ious domains, attempts to extrapolate their potential to the field
of recommendation systems have been relatively recent. Certain
studies within the realm of social recommendation have explored
information diffusion on social networks [43, 44]. However, these
primarily concentrate on the impact of social connections on user
preferences through diffusion processes [26], which is intrinsically
different from the nature and application of Diffusion models. In
the entire landscape of recommendation systems, CODIGEM [35]
stands as the pioneer in genuinely deploying diffusion models for
recommendation purposes. CODIGEM iteratively introduces noise
and employs an array of distinct Autoencoders for prediction at
each step. Building on this foundation, DiffRec [37] streamlines
the diffusion models and utilizes a shared Multilayer Perceptron
(MLP) for multi-step prediction, although it continues to predict
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the subsequent state in a step-by-step manner. Moreover, as it es-
sentially remains an unconditional generation model, it lacks the
capacity to fully generate behavioral information that aligns with
user interests.

Breaking away from these previous approaches, our work seeks
to simplify the diffusion model further, guiding the generation
process of behavioral information via the multimodal preferences
of users. We also consider the inherent connection between pieces
of behavioral data during processing, thereby generating behavioral
information that better aligns with user preferences.

6 CONCLUSION
In this paper, we have proposed a Light Diffusionmodel forMultime-
dia Recommendation (LD4MRec). Specifically, we greatly simplify
the conventional DiffusionModels for multimedia recommendation.
And we design a C-Net to fit the reverse process and effectively
generate personalized behavioral information.

In our future work, we will focus on optimizing the design of the
C-Net to enhance the quality of generation. Additionally, we plan
to explore the diffusion of behavioral information in the hidden
space, with the intention of reducing the number of parameters
and computational requirements.
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