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ABSTRACT
Multimedia recommender systems focus on utilizing behavioral

information and content information to model user preferences.

Typically, it employs pre-trained feature encoders to extract con-

tent features, then fuses them with behavioral features. However,

pre-trained feature encoders often extract features from the entire

content simultaneously, including excessive preference-irrelevant

details. We speculate that it may result in the extracted features not

containing sufficient features to accurately reflect user preferences.

To verify our hypothesis, we introduce an attribution analysis

method for visually and intuitively analyzing the content features.

The results indicate that certain products’ content features exhibit

the issues of information drift and information omission, re-
ducing the expressive ability of features. Building upon this find-

ing, we propose an effective and efficient general Behavior-driven
Feature Adapter (BeFA) to tackle these issues. This adapter re-

constructs the content feature with the guidance of behavioral

information, enabling content features accurately reflecting user

preferences. Extensive experiments demonstrate the effectiveness

of the adapter across all multimedia recommendation methods. The

code will be publicly available upon the paper’s acceptance.

KEYWORDS
Multimodal Recommendation, Feature Adapter, Information Drift,

Information Omission

1 INTRODUCTION
Recommender systems have gained widespread adoption across

various domains, aiming to assist users in discovering information

that aligns with their preferences [17, 22]. In the case of multimedia

platforms, the abundance of data resources provides recommender

systems with increased opportunities to accurately model user

preferences [47].

Existingmultimedia recommendationmethods typically involves

two main steps [41, 47]. First, a pre-trained feature encoder is em-

ployed to capture content features from diverse modalities. Subse-

quently, these content features are fused with behavioral features
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Figure 1: Illustration of content features that do not accu-
rately reflect the users’ preferences. Excessive irrelevant in-
formation hinders the recommender system’s ability to ef-
fectively model the users’ true preferences.

to obtain user preference representations. Recently, researchers

have focused on enhancing the quality of these representations

through self-supervised learning. For instance, SLMRec [29] inves-

tigates potential relationships between modalities through the use

of contrastive learning, thereby obtaining a powerful representa-

tion. BM3 [52] utilizes a dropout strategy to construct multiple

views and reconstructs the interaction graph, incorporating intra-

and inter-modality contrastive loss to facilitate effective represen-

tation learning. MICRO [43] and MGCN [40] maximize the mutual

information between content features and behavioral features with

a self-supervised auxiliary task, and have achieved excellent per-

formance.

Despite the good progress made by existing methods in utilizing

content and behavioral information more effectively, a crucial yet

easily overlooked problem arises: Are content features obtained
from pre-trained encoders containing sufficient features to
reflect user preferences? Intuitively, multimedia content inher-

ently exhibits the characteristic of low informational value density,

where a significant portion of the presented information may be

irrelevant to the users’ focus [43, 47]. Pre-trained feature encoders

extract information from the entire content simultaneously, which
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Figure 2: Results of visualisation attribution analysis on the TMALL dataset.(a) is the original product image and (b) is its
corresponding heatmap.

can result in content features that do not truly reflect the users’

preferences (as shown in Figure 1). Fusing these irrelevant con-

tent features with behavioral features may mislead user preference

modeling, resulting in suboptimal recommendation performance.

To answer this question, we introduce a similarity-based attri-

bution analysis method for visualizing and intuitively analyzing

the content features. This method evaluates the extent to which

content features can reflect user preferences, enabling researchers

to visually assess the quality of content features for the first time.

The results indicate that not all products’ content features accu-

rately reflect user preferences. Due to the presence of irrelevant

information, certain products’ content features exhibit the issues of

information drift and information omission. As shown in Fig-

ure 2, some products’ content features do not include information

about the products that users are interested in, but instead erro-

neously include information about unrelated items, a phenomenon

we term information drift. There are also some products’ content

features that omit certain key details of the products, which we

refer to as information omission. These issues ultimately prevent

recommender systems from accurately modeling user preferences.

To verify the rationality of these findings, we provide a theoretical

analysis and explanation. Furthermore, we propose a plug-and-play

general Behavior-driven Feature Adapter (BeFA) to address the

discovered issues. This adapter effectively decouples, filters and

reconstructs content features, leveraging behavioral information as

a guide to obtain more precise representations of content informa-

tion. Extensive experiments demonstrate the adapter’s effectiveness

across various multimedia recommendation methods and feature

encoders.

Our main contributions can be summarized as follows:

• We introduce a similarity-based visual attribution method,

which enables researchers to visually analyze the quality

of content features for the first time.

• We experimentally revealed the issues of information drift

and information omission in content features. We also pro-

vide a theoretical analysis to validate the rationality of these

findings.

• Wepropose a general behavior-driven feature adapter, which

obtain more precise content representation through decou-

pling and reconstructing content features.

2 RELATEDWORKS
2.1 Multimedia Recommendation
Collaborative filtering (CF)-based approaches have achieved great

success in recommender systems, relying on behavioral similarities

to make top-k recommendations [21, 44]. Since user preferences

are usually influenced by multimodal information, it facilitates

researchers to integrate multimodal content information into CF-

based approaches with the aim of improvement. Typically, content

features are first extracted using pre-trained neural networks and

then fused with behavioral features to enhance preference mod-

eling [6, 41]. Considering that behavioral information can be nat-

urally modeled as a bipartite graph structure, researchers begin

work on recommender systems based on Graph Convolutional Net-

work(GCN) [1, 38]. For instance, MMGCN citemmgcn constructs

modality-specific user-item interaction graphs to model user prefer-

ences specific to each modality. LATTICE [42] adds links between

items with similar modality characteristics and create a separate

item-item graph for each modality. FREEDOM [51] constructs item-

item graphs to help learn item semantic relations and reduces the

graphs according to the sensitivity edge pruning technique. Mean-

while, researchers began to focus on enhancing the quality of repre-

sentations through self-supervised learning. BM3 [52] learns user

and item representations by reconstructing the user-item inter-

action graph and aligning modality features from both inter and

intra-modality perspectives. MGCN [40] comprehensively models

user preferences by adaptively learning the relative importance of

different modality features.

However, existing methods usually directly utilize features ex-

tracted from pre-trained feature encoders as side information for

each item. The pre-trained feature encoders are trained on large-

scale datasets collected from the natural world. The features of

natural data and e-commerce data are very different. In e-commerce

scenarios, the content information often contains a lot of irrelevant

information and exhibits the characteristic of low value density. For

example, only a small portion of the content image contain relevant

information, while the rest is considered noise. This disparity leads

to a substantial amount of noise in the contetn features extracted

by pre-trained encoders when applied to multimodal recommender

systems. Consequently, the content features do not contain enough
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Figure 3: Pipeline of the proposed attribution analysis method.

features to sufficiently reflect users’ preferences. Fusing these ir-

relevant content features with behavioral features may mislead

user preference modeling, resulting in suboptimal recommendation

performance.

2.2 Attribution Analysis
Methods for modality feature attribution analysis have been widely

studied, aiding in the visualization of modality feature content.

Class Activation Mapping (CAM) [46] is a method used to visualize

the decision-making process of convolutional neural networks by

generating heatmaps that highlight regions of an image contribut-

ing to a particular class prediction. Grad-CAM [27] enhances this

by using the gradient of the target class with respect to the feature

maps of a specific convolutional layer, creating heatmaps that can

be applied to various network architectures without altering the

network structure. Score-CAM [33] further improves upon Grad-

CAM by weighting the activation map using output scores instead

of gradient information, thus avoiding gradient-related problems.

In multimodal recommender systems, t-SNE [31] is often used to

visualize the distribution of samples in high-dimensional feature

spaces, providing insights into the relationships and distributions

among different modality features.

However, current methods [2, 10] for analyzing image feature

weights predominantly rely on CAM-based methods. The heatmaps

generated by these methods only reflect the contribution of cer-

tain image regions to classification tasks or the relevance of text

features, failing to capture the role of multimodal features in rec-

ommender systems. Most existing multimodal recommendation

works use use t-SNE [31] to analyze the modality features because

t-SNE can visualize multimodal feature distributions. But t-SNE

can only show the distribution of features in 2-dimensional space,

which lacks the intuitive effectiveness of CAM-generated heatmaps

and is not suitable for understanding and analyzing specific con-

tent features. Consequently, existing attribution analysis methods

exhibit significant deficiencies in analyzing multimodal features

within multimodal recommender systems.

2.3 Parameter-Efficient Adaptation
In the field of computer vision (CV) and natural language process-

ing (NLP), several studies have identified that semantic differences

can restrict the expressiveness of features, thereby impacting the

model’s performance as well as downstream tasks [12, 26]. To ad-

dress this challenge, researchers have explored techniques such

as fine-tuning and adapters to bridge these semantic differences

[7, 8, 13]. However, in the context of recommendation scenarios

where data is continuously changing and expanding, performing

full fine-tuning of the encoder poses significant challenges. It often

requires a significant amount of time and computational resources,

and it may even lead to a decline in the model’s ability to generalize

to new data. Given these practical limitations, retraining the feature

encoder from scratch for every change in the data is unrealistic.

Most of the existing multimodal recommendation methods directly

use pre-trained features without fine-tuning, but the content feature

extracted by the pre-trained feature encoders may not be sufficient

to reflect the users’ preferences, so we consider introducing feature

adapters. One such approach is Low-Rank Adaptation(LoRA) [8],

3



which reduces the number of trainable parameters by integrating

trainable low-rank decomposition matrices into the Transformer

architecture. Another approach is Prompt Tuning [13], which of-

fers a different perspective by incorporating learnable embedding

vectors, acting as hints, into the inputs of the pre-trained model.

However, adding adapters to the middle layer of the pre-trained

model may lead to some information loss. Existing parameter tun-

ing methods are not generalized for recommendation tasks, as they

fail to adequately incorporate behavioral information, which intu-

itively reflects the users’ preferences and is crucial for an effective

recommender systems.

3 PRELIMINARIES
In this section, we analyze and prove in detail the problems of the

content features extracted by pre-trained encoders for recommen-

dation tasks. In section 3.1 we introduce an attribution analysis

for visual attribution analysis of content features in multimodal

recommender systems. In section 3.2, we specifically analyze the

deficiencies of pre-trained feature encoders. In section 3.3 we ana-

lyze and prove the problems from a mathematical and theoretical

point of view.

3.1 Attribution Analysis
Existing methods for analyzing the weights of image features are

predominantly based on class activation mapping (CAM) [46]. How-

ever, the heatmaps generated by CAM only reflect the contribution

of certain image regions to the classification task and fail to assess

their impact on recommendation models [2, 33]. These limitations

restrict our in-depth understanding of modality feature processing

in recommender systems. Thus we designed the attribution analysis

method for analyzing image features in multimodal recommenda-

tions based on the characteristics of recommender systems.

To visually illustrate the issues raised, we introduce a intuitively

analysis for the attribution of multimodal features in the recom-

mender system. This method aims to explore the effectiveness of

content features extracted by pre-trained multimodal feature en-

coders in multimodal recommender systems. It also provides a

visual demonstration of the effectiveness of our proposed adapter

in bridging the gap between the content features extracted by the

pre-trained encoders and the features required by the recommender

system. To accurately identify which parts of the content features

users pay attention to, we use cosine similarity as a measurement.

By calculating the cosine similarity of each pixel to the behavioral

features in the recommendation models, we generate a saliency

heatmap. This heatmap is created by weighting and summing the

masked feature maps based on the calculated similarities. This

approach visualizes the portions of the content features that are

truly effective in the recommendation task, providing a deeper un-

derstanding of the role of multimodal features in recommender

systems.

similarity(𝑥,𝑦) =
𝑣𝑥 · 𝑣𝑦

∥𝑣𝑥 ∥ · ∥𝑣𝑦 ∥
(1)

Similar to the concept behind CAM-based approaches, we choose

the target layer for visualization to ensure interpretability [2, 33].

In the case of image encoders, for both ResNet [5] and ViT [3]

versions, we select the channels closest to the CLIP prediction

θ 

Embedding Space

ei

ei’

p

ej

Figure 4: An illustration of a theoretical analysis of deficiency
analysis

layer. In convolutional neural networks (CNNs), as the layers go

deeper, the information represented in the feature maps becomes

more abstract and high-level. The feature maps of the last ReLU

layer capture the most important high-level features in the input

image. ReLU-activated feature maps contain only positive or zero

activations, which helps to emphasize the regions that the model

considers more relevant. For the ViT series, as the gradients are zero

for all layers except for the [CLS] token and only the [CLS] token

is used for final predictions in the last layer embedding, we choose

the penultimate layer. Consequently for the ResNet series, we select

the last ReLU layer of the final Bottleneck as the target layer, for

the ViT series, we use the second-to-last ResidualAttentionBlock

as the target layer.

In the first stage, we perform a forward pass of the product

images through CLIP, obtaining 𝑁 channels at the target layer

denoted as𝐴𝑖
𝑁
. The purpose is to discriminate the contributions of

different targets across different channels. Subsequently, for each

channel, we upsample it, denoted as 𝐴
𝑢𝑝

𝑖
. This is done to generate

masked images corresponding to different parts and to calculate

the similarity weights of different regions. In the second stage,

element-wise multiplication is performed between each mask 𝐴
𝑢𝑝

𝑖
and all color channels 𝑥 of the input image, and then the result is

compared with the corresponding to behavioral features to compute

the similarity. We name our method Behavior Information CAM

(BeCAM) and its saliency map is computed by:

𝑀𝑖
BeCAM

=

𝑁∑︁
𝑖

𝐴𝑖 × similarity((𝑥 ⊙ 𝐴
𝑢𝑝

𝑖
), 𝐼𝐷𝑖 ) (2)

where ⊙ is the Hadamard product.

3.2 Deficiency Analysis
By analyzing the generated heatmap (shown in Figure 2), it is clear

that the pre-trained feature encoder suffers from the issues of wrong

region of interest and insufficient region of interest on the product

dataset. This can be visualized by the fact that the content features

extracted by the pre-trained feature encoders have the problems

of information drift and information omission. This is a very
visible demonstration of the low information value density of the
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Figure 5: Comparison of efficient parameter tuningmethods. (a) Low-Rank Adaptation (b) Soft Prompt Turning (c) Our proposed
adapter.

multimedia content itself, resulting the content features are insuffi-

cient to reflect users’ preferences.

Specifically, as shown in Figure 2, although the user wants to buy

clothes, the feature encoder incorrectly focuses on the model’s face,

resulting in information drift. There are also products whose

content features miss some key details of the product, such as only

focusing on certain details of the clothes and failing to focus on

its whole, resulting in information omission. Information drift

can cause the recommender system to ignore useful and critical

information. This leads to a loss of important guidance for the

recommendation task. It also results in a mismatch between recom-

mendations and users’ preferences. Information omission can result

in important visual or textual cues being ignored or incomplete.

This causes a loss of critical information needed for the recom-

mendation task. These issues collectively compromise the overall

effectiveness of the recommender system. As a result, directly ap-

plying the content features extracted by the pre-trained encoder

in the multimodal recommender system will inevitably impair the

performance of the recommender system.

3.3 Theoretical Analysis
In this section, we reveal the deficiencies of content features ex-

tracted by pre-trained feature encoders within the embedding space.

We analyze the gap between these content features and the ideal

features required by the recommendation model. Furthermore, we

demonstrate that optimizing the consistency between the extracted

features and the ideal features necessary for accurate recommenda-

tion predictions can significantly enhance recommendation perfor-

mance. This analysis provides theoretical support for the effective-

ness of our proposed adapter.

The embedding space captures the semantic relationships and

similarities between features. Analyzing features in the embedding

space enables a better understanding and interpretation of their

relationships. Formally, considering a node 𝑖 and its representa-

tion 𝒆𝒊 in the embedding space, which represents the ideal features

required by the recommendation model. On the basis of the item

feature representation 𝒆𝒊 in the embedding space, the recommender

system calculates the probability distribution of the rating or click-

ing behavior of the user 𝑢 on the item 𝑖 , which can be viewed as

the prediction 𝑃 (𝑟𝑢𝑖 |𝒆𝒖 , 𝒆𝒊). Where 𝑟𝑢𝑖 stands for the rating or click

behavior of the user 𝑢 on item 𝑖 , 𝒆𝒖 represents the user’s feature,

and 𝒆𝒊 signifies the item’s feature. Our objective is to find the opti-

mal user feature 𝑒𝑢 and item feature 𝒆𝒊 to maximize the posterior

distribution 𝑃 (𝑟𝑢𝑖 |𝒆𝒖 , 𝒆𝒊). In other words, we aim to maximize the

posterior distribution for the user feature 𝒆𝒖 and item feature 𝒆𝒊 pa-
rameters. This can be formally described by the following objective

function:

𝐿(𝒆𝒖 , 𝒆𝒊) = arg max

𝒙𝒖 ,𝒆𝒊
𝑃 (𝑟𝑢𝑖 |𝒆𝒖 , 𝒆𝒊) (3)

The representation 𝒆′𝒊 extracted by the feature encoder can be seen

as the prior distribution. However, due to semantic differences

between the natural data and e-commerce data, there is inevitably

some deviations between the features extracted by the pre-trained

feature encoder and the ideal features. Let us denote this deviation

as 𝜃 .

𝜃 = arccos

(
𝒆𝒊 · 𝒆′𝒊

∥𝒆𝒊 ∥∥𝒆′𝒊 ∥

)
(4)

Analyzing 𝜃 helps understand the deviation between the features

extracted by the feature encoder and the ideal features. A smaller 𝜃

indicates that the two representations are very close in the embed-

ding space. This implies a high consistency between the features

extracted by the feature encoder and the ideal features, which

benefits the recommendation system in accurately capturing user

interests and item similarities. By reducing 𝜃 , the features become

5



Table 1: Statistics of the experimental datasets

Dataset #User #Item #Behavior Density

TMALL 13,104 7,848 151,928 0.148%

Microlens 46,420 14,079 332,730 0.051%

H&M 43,543 16,915 369,945 0.050%

closer to the ideal features, thereby enhancing the performance of

the recommendation system.

The part 𝑝 of the representation 𝒆′𝒊 extracted by the encoder that
is truly effective for the recommendation task can be represented

as follows:

𝑝 =

(
𝒆′𝒊 ·

𝒆𝒊
∥𝒆𝒊 ∥

)
𝒆𝒊
∥𝒆𝒊 ∥

= 𝒆′𝒊 · cos(𝜃 ) (5)

When the deviation 𝜃 is large, as 𝒆′𝒊 in Figure 4, content features

exhibit the issues of information omission, causing the effective

length of 𝑝 deviates significantly from 𝒆𝒊 . This results in a lack of

crucial information in the extracted features, reflected as insufficient

region of interest in the heatmap. Conversely, when 𝜃 is too large,as

𝒆𝒋 in Figure 4, content features exhibit the issues of information

drift, with 𝑝 being located in the wrong quadrant and its effective

direction opposing 𝒆𝒊 . This introduces a large amount of incorrect

information, reflected as incorrect region of interest in the heatmap.

In such circumstances, the recommendation system is easily to

make incorrect recommendations, because the feature represen-

tation contradicts the users’ preferences, failing to appropriately

reflect the characteristics of items or users. In the recommendation

task, we aim for a smaller deviation between 𝒆′𝒊 and 𝒆𝒊 . To formalize

this objective, we define an error function 𝑓 (𝒆′𝒊, 𝒆𝒊) to measure the

gap between the representations:

𝑓 (𝒆′𝒊, 𝒆𝒊) =
(
1 −

𝒆′𝒊 · 𝒆𝒊
∥𝒆′𝒊 ∥∥𝒆𝒊 ∥

)
(6)

We seek to minimize the expected deviation measure Δ. We can

define Δ as:

Δ = E𝑃 (𝒆′𝒊 ) [𝑓 (𝒆
′
𝒊, 𝒆𝒊)] (7)

The function 𝑓 (𝒆′𝒊, 𝒆𝒊) measures the deviation between representa-

tions. In recommendation tasks, the quality of the feature represen-

tation 𝒆′𝒊 directly affects the accuracy and effectiveness of recom-

mendations. A decline in the quality of 𝒆′𝒊 , indicated by an increase

in the value of the error function 𝑓 (𝒆′𝒊, 𝒆𝒊), donates an augmented

diversity between the representation extracted by the pre-trained

encoder 𝒆′𝒊 and the ideal representation 𝒆𝒊 . Consequently, this leads
to an increase in the expected deviation Δ, subsequently influencing
the posterior distribution 𝑃 (𝑟𝑢𝑖 |𝒆𝒖 , 𝒆𝒊). Such circumstances may

impair the recommendation system’s ability to accurately capturing

the users’ preferences, thereby reducing the accuracy and efficacy

of recommendations. By minimizing Δ, we can ensure that the

representation 𝒆′𝒊 are closer to the ideal representation 𝒆𝒊 in expec-

tation. This adaptation of content features enhances the consistency

with the ideal representation and thus improves the performance

of the recommender system.

4 FEATURE ADAPTER
To address the discovered issues, we proposed Behavior-driven

Feature Adapter (BeFA). This is a adapter for adapting multimodal

content features that are employed by multimodal recommender

systems. Specifically, the content features are first extracted by a pre-

trained encoder, and then the content features are adapted by BeFA,

and then fed into the multimodal recommender system for item and

user modeling. BeFA and the downstream recommender system

share the optimization objective and use End-to-End training.

4.1 Problem Formulation
Let 𝑢 ∈ U and 𝑖 ∈ I denote the user and item, respectively. The

input behavioral features for user 𝑢 and item 𝑖 are represented as

E
id
∈ R𝑑×( |𝑈 |+|𝐼 | )

, where 𝑑 is the embedding dimension. Each item

modality feature is denoted as Ei,m ∈ R𝑑𝑚×|𝐼 |
, where 𝑑𝑚 is the

dimension of the features, 𝑚 ∈ M represents the modality, and

M is the set of modalities. In this paper, we primarily focus on

visual and textual modalities, denoted by M = {𝑣, 𝑡}. It’s worth
noting that our approach is adaptable to incorporate more than two

modalities.

Next, the users’ historical behavior feature is represented as

𝑅 ∈ {0, 1} |𝑈 |× |𝐼 |
, where each entry 𝑅𝑢,𝑖 = 1 if user 𝑢 clicked item 𝑖 ,

otherwise 𝑅𝑢,𝑖 = 0 . This historical interaction data 𝑅 can naturally

be interpreted as a user-item bipartite graph G = {V, E}. In G ,

the vertex set V = U ∪ I donates all items and users. The edge

set E = {(𝑢, 𝑖) |𝑢 ∈ U, 𝑖 ∈ I, 𝑅𝑢,𝑖 = 1} represents the interacted
users and items. The objective of multimedia recommendation is

to accurately predict users’ preferences by ranking items for each

user based on predicted preference scores 𝑦𝑢,𝑖 .

4.2 Behavior-driven Feature Adapter
Due to the shortcomings of pre-trained feature encoders, their

extracted content features contain a significant amount of irrele-

vant and erroneous information. To better utilize modality infor-

mation,we propose Behaviour-driven Feature Adapter(BeFA) for
adapting content features. Firstly, we decouple the original item

content features Ei,m into features in the decoupled feature space

Ei,m:

¤E𝑖,𝑚 = W1E𝑖,𝑚 + b1, (8)

whereW1 ∈ R𝑑×𝑑𝜆 and b1 ∈ R𝑑𝑚 represent trainable transforma-

tion matrix and bias vector, respectively.

Considering that the behavioral information fully reflects the

users’ preference, we filter the preference-related content features

with the help of behavioral information guidance:

¥E𝑖,𝑚 = 𝑓𝑚𝑔𝑎𝑡𝑒 (E𝑖,𝑖𝑑 , ¤E𝑖,𝑚) = E𝑖,𝑖𝑑 ⊙ 𝜎 (W2
¤E𝑖,𝑚 + b2), (9)

where W2 ∈ R𝑑𝜆×𝑑𝜆 and b2 ∈ R𝑑𝑚 are trainable parameters. Here,

⊙ denotes element-wise multiplication, and 𝜎 is the Tanh non-linear

transformation.

Finally, the decoupled content features are recombined. Given

that behavioral information reflects user preferences, we determine

the weights of different decoupled content features based on the

guidance provided by this behavioral information:

E𝑖,𝑚 = 𝑓𝑚𝑚𝑒𝑟𝑔𝑒 (E𝑖,𝑖𝑑 , ¥E𝑖,𝑚) = E𝑖,𝑖𝑑 ⊙ 𝜎 (W3
¥E𝑖,𝑚 + b3), (10)
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Figure 6: Visual analysis of the effect of adapter on feature purification. (a) is the original image. (b) is the similarity heatmap
of the visual features extracted by the pre-trained CLIP. (c) (d) (e) are the similarity heatmaps of the visual features adapted by
BeFA applied on FREEDOM, BM3 and LATTICE respectively

where W3 ∈ R𝑑𝜆×𝑑 and b3 ∈ R𝑑 are trainable parameters. Simi-

larly, ⊙ denotes element-wise multiplication, and 𝜎 is the sigmoid

non-linear transformation. It is important to note that although

Equations 9 and 10 are formally similar, they achieve different ef-

fects.

Moreover, we introduce ReLU activation functions and Dropout

between each transformation layer. This enables the model to learn

non-linear relationships, thereby improving its fitting ability and

expressive power. Additionally, it enhances the model’s generaliza-

tion, making it more suitable for practical application scenarios.

5 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the

performance of the proposed adapter on three public datasets to

answer following research questions.

• RQ1:How effective is BeFA applied to existing multimodal

recommender systems?

• RQ2: How effective is BeFA in adapting content features?

• RQ3: Why purifying modality information can achieve

better recommendation performance?

• RQ4: How do hyper-parameter settings impact the perfor-

mance of BeFA?

5.1 Experimental Settings
5.1.1 Datasets. We conducted experiments on three publicly avail-

able datasets: (a) TMALL
1
; (b) Microlens

2
; and (c) H&M

3
. We per-

formed 10-core filtering on the raw data. The detailed information

1
https://tianchi.aliyun.com/dataset/140281

2
https://recsys.westlake.edu.cn/MicroLens-50k-Dataset/

3
https://www.kaggle.com/datasets/odins0n/handm-dataset-128x128
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Table 2: Performance Comparison on Different Recommender Models. The t-tests validate the significance of performance
improvements with p-value ≤ 0.05.

TMALL Microlens H&M

Encoder Datasets

R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

BM3 0.0189 0.0298 0.0102 0.0132 0.0510 0.0851 0.0278 0.0375 0.0204 0.0320 0.0114 0.0144

BM3+BeFA 0.0212 0.0319 0.0115 0.0144 0.0566 0.0911 0.0314 0.0412 0.0266 0.0391 0.0157 0.0190

Imporve 12.17% 7.05% 12.75% 9.09% 10.98% 7.05% 12.95% 9.87% 30.39% 22.19% 37.72% 31.94%

LATTICE 0.0238 0.0356 0.0134 0.0167 0.0553 0.0886 0.0308 0.0402 0.0289 0.0427 0.0161 0.0197

LATTICE+BeFA 0.0260 0.0403 0.0183 0.0183 0.0593 0.0943 0.0328 0.0427 0.0317 0.0498 0.0171 0.0217

Imporve 9.24% 13.20% 36.57% 9.58% 7.23% 6.43% 6.49% 6.22% 9.69% 16.63% 6.21% 10.15%

FREEDOM 0.0212 0.0340 0.0113 0.0148 0.0474 0.0774 0.0262 0.0348 0.0348 0.0526 0.0188 0.0234

FREEDOM+BeFA 0.0253 0.0375 0.0136 0.0170 0.0503 0.0814 0.0279 0.0368 0.0409 0.0583 0.0226 0.0271

Improve 19.34% 10.29% 20.35% 14.86% 6.12% 5.17% 6.49% 5.75% 17.53% 10.84% 20.21% 15.81%

MGCN 0.0249 0.0380 0.0135 0.0171 0.0618 0.0972 0.0342 0.0442 0.0367 0.0549 0.0204 0.0251

MGCN+BeFA 0.0261 0.0395 0.0142 0.0179 0.0630 0.1000 0.0351 0.0456 0.0405 0.0594 0.0225 0.0274

Improve 4.82% 3.95% 5.19% 4.68% 1.94% 2.88% 2.63% 3.17% 10.35% 8.20% 10.29% 9.16%

CLIP

Avg Imporve 11.39% 8.62% 18.71% 9.55% 6.57% 5.38% 7.14% 6.25% 16.99% 14.46% 18.61% 16.77%
BM3 0.0184 0.0299 0.0097 0.0129 0.0508 0.0842 0.0279 0.0373 0.0195 0.0304 0.0107 0.0135

BM3+BeFA 0.0224 0.0322 0.0125 0.0152 0.0537 0.0877 0.0299 0.0395 0.0248 0.0378 0.0149 0.0183

Imporve 21.74% 7.69% 28.87% 17.83% 5.71% 4.16% 7.17% 5.90% 27.18% 24.34% 39.25% 35.56%

LATTICE 0.0252 0.0374 0.0139 0.0173 0.0580 0.0953 0.0320 0.0426 0.0293 0.0439 0.0164 0.0202

LATTICE+BeFA 0.0266 0.0403 0.0147 0.0184 0.0633 0.1021 0.0340 0.0451 0.0316 0.0498 0.0171 0.0218

Imporve 5.56% 7.75% 5.76% 6.36% 9.14% 7.14% 6.25% 5.87% 7.85% 13.44% 4.27% 7.92%

FREEDOM 0.0197 0.0319 0.0107 0.0140 0.0613 0.0976 0.0337 0.0440 0.0364 0.0553 0.0192 0.0241

FREEDOM+BeFA 0.0259 0.0377 0.0141 0.0174 0.0641 0.1004 0.0356 0.0459 0.0417 0.0613 0.0234 0.0285

Improve 31.47% 18.18% 31.78% 24.29% 4.57% 2.87% 5.64% 4.32% 14.56% 10.85% 21.88% 18.26%

MGCN 0.0266 0.0403 0.0144 0.0182 0.0693 0.1075 0.0388 0.0496 0.0405 0.0613 0.0218 0.0272

MGCN+BeFA 0.0275 0.0414 0.0152 0.0185 0.0702 0.1085 0.0389 0.0498 0.0451 0.0655 0.0246 0.0299

Improve 3.38% 2.73% 5.56% 1.65% 1.30% 0.93% 0.26% 0.40% 11.36% 6.85% 12.84% 9.93%

ImageBind

Avg Imporve 15.54% 9.09% 17.99% 12.53% 5.18% 3.77% 4.83% 4.12% 15.24% 13.87% 19.56% 17.92%

of the filtered data is presented in Table 1. For multimodal infor-

mation, we utilized pre-trained CLIP [24] and ImageBind [4] to

generate aligned multimodal features.

5.1.2 Comparative Model Evaluation. To verify the prevalence of

feature encoder defects, we used ViT-B/32-based CLIP [24] and Im-

ageBind [4] for our experiments. CLIP is a general-purpose feature

encoder capable of handling a wide range of data types and applica-

tion domains. It realizes cross-modality feature representations and

exhibits highly efficient performance, making it widely adopted

in practical applications and performing well across various tasks.

ImageBind is the latest cross-modality feature encoder, which can

handle a wider variety of modality information, and achieves a new

SOTA performance in the emerging zero-shot recognition task for

various modalities, even outperforming the previous specialized

models trained specifically for these modalities.

To evaluate the effectiveness of our proposed adapter, we applied

it to several representative multimodal recommendation models,

including LATTICE [42], BM3 [52], FREEDOM [51], and MGCN

[40] for comparison. Additionally, we compared our adapter with

existing efficient parameter tuning methods such as LoRA [8] and

Soft-Prompt Tuning [13].

i) Multimodal Recommendation Models:

• LATTICE [42]: This method designs a newmodality-aware

structure learning layer that learns the item-item structure

of each modality and aggregates multiple modalities to ob-

tain latent item graphs. Based on the learned latent graphs,

graph convolution is performed to explicitly inject higher-

order item affinities into item representations.

• BM3 [52]: This method proposes a simple self-supervised

learning framework that generates target views of users or

items for comparison learning without negative samples.

• FREEDOM [51]: This method devises a degree-sensitive

edge pruningmethod to denoise user-item interaction graphs,

rejecting potentially noisy edgeswith high probabilitywhen

sampling the graph.

• MGCN [40]: This method introduces a behavior-aware

fuser to effectively model user preferences by dynamically

learning the relative significance of various modality fea-

tures. Additionally, it integrates the fuserwith a self-supervised

auxiliary task aimed at maximizing the mutual information

between the fused multimodal features and behavioral fea-

tures. This approach enables the concurrent capture of com-

plementary and supplementary preference information.

ii) Efficient Parameter Tuning Methods
• Low-Rank Adaptation (LoRA) [8]: This method aims to

enhance the representation of a model while keeping the

number of model parameters relatively small. It provides

additional learning power by introducing lower rank matri-

ces to linearly transform the hidden representation of the

original model. This approach strikes a balance between

parameter efficiency and model performance.

• Soft Prompt Turning [13]: This method enhances model

performance by fine-tuning small, task-specific embeddings
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Table 3: Performance Comparison with other Efficient Parameter Adaptation methods. The best result is in boldface and the
second best is underlined. The t-tests validate the significance of performance improvements with p-value ≤ 0.05.

TMALL Microlens H&M

Dadasets

R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

BM3 0.0189 0.0298 0.0102 0.0132 0.0510 0.0851 0.0278 0.0375 0.0204 0.0320 0.0114 0.0144

BM3+LoRA 0.0215 0.0333 0.0117 0.0150 0.0510 0.0850 0.0280 0.0376 0.0191 0.0290 0.0110 0.0135

BM3+SoftPrompt 0.0193 0.0298 0.0102 0.0131 0.0517 0.0861 0.0285 0.0382 0.0202 0.0311 0.0114 0.0142

BM3+BeFA 0.0212 0.0319 0.0115 0.0144 0.0566 0.0911 0.0314 0.0412 0.0266 0.0391 0.0157 0.0190
LATTICE 0.0238 0.0356 0.0134 0.0167 0.0553 0.0886 0.0308 0.0402 0.0289 0.0427 0.0161 0.0197

LATTICE+LoRA 0.0254 0.0384 0.0147 0.0183 0.0550 0.0884 0.0304 0.0399 0.0289 0.0434 0.0163 0.0201

LATTICE+SoftPrompt 0.0266 0.0389 0.0148 0.0182 0.0539 0.0889 0.0294 0.0393 0.0301 0.0459 0.0166 0.0207

LATTICE+BeFA 0.0260 0.0403 0.0183 0.0183 0.0593 0.0943 0.0328 0.0427 0.0317 0.0498 0.0171 0.0217
FREEDOM 0.0212 0.0340 0.0113 0.0148 0.0474 0.0774 0.0262 0.0348 0.0348 0.0526 0.0188 0.0234

FREEDOM+LoRA 0.0197 0.0323 0.0106 0.0141 0.0476 0.0774 0.0264 0.0349 0.0352 0.0533 0.0190 0.0237

FREEDOM+SoftPrompt 0.0215 0.0342 0.0118 0.0154 0.0465 0.0769 0.0258 0.0345 0.0406 0.0577 0.0224 0.0268

FREEDOM+BeFA 0.0243 0.0364 0.0131 0.0164 0.0503 0.0814 0.0279 0.0368 0.0409 0.0583 0.0226 0.0271
MGCN 0.0249 0.0380 0.0135 0.0171 0.0618 0.0972 0.0342 0.0442 0.0367 0.0549 0.0204 0.0251

MGCN+LoRA 0.0260 0.0391 0.0141 0.0179 0.0598 0.0963 0.0335 0.0438 0.0367 0.0554 0.0203 0.0252

MGCN+SoftPrompt 0.0260 0.0391 0.0144 0.0180 0.0597 0.0955 0.0334 0.0435 0.0375 0.0557 0.0207 0.0254

MGCN+BeFA 0.0261 0.0395 0.0142 0.0179 0.0630 0.1000 0.0351 0.0456 0.0405 0.0594 0.0225 0.0274
Avg Improve 2.44% 1.71% 7.89% 0.48% 6.08% 4.98% 6.25% 5.67% 11.11% 9.59% 12.58% 11.44%

(prompts) inserted into the input, thereby adapting pre-

trained language models to new tasks without altering their

original weights.

5.1.3 Evaluation Protocols. For a fair comparison, we follow the

evaluation settings in [42, 52] with the same 8:1:1 data splitting

strategy for training, validation and testing. Besides, we follow

the all-ranking protocol to evaluate the top-K recommendation

performance and report the average metrics for all users in the test

set: R@K andN@K, which are abbreviations for Recall@K [23] and

NDCG@k [9], respectively.

5.1.4 Implementation Details. We implement MMRec
4
[50] based

on PyTorch, which is a unified public repository designed for mul-

timodal recommendation methods. To ensure fair comparison, we

employed the Adam optimizer to optimize all methods and referred

to the best hyperparameter settings reported in the original baseline

paper. For general settings, we initialized embeddings with Xavier

initialization of dimension 64, set the regularization coefficient to

𝜆𝐸 = 10
−4
, and batch size to 𝐵 = 2048. Early stopping and total

epochs are fixed at 10 and 1000, respectively. We selecte the best

model with the highest Recall@20 metric on the validation set and

reported metrics on the test set accordingly.

5.2 Overall performance(RQ1)
5.2.1 Effectiveness.
(a) Comparison of model performance before and after ap-
plying BeFA
Table 2 shows the performance comparison of BeFA applied to ex-

isting multimodal recommendation models on three datasets. From

the table,we find several observations:

• Our adapter significantly improved recommendation per-

formance on all three datasets. Specifically, our adapter

4
https://github.com/enoche/MMRec

has achieved an average improvement of 9.07% and 11.02%

over the baseline in terms of Recall@20 and NDCG@20.

This suggests that the content features extracted by the

pre-trained encoder do have deficiencies that affect rec-

ommendation performance. Our processing of content fea-

tures is very efficient and effectively reduces modality noise.

This helps the multimodal recommendation models to bet-

ter utilize the modality information and thus improve the

recommendation performance.

• Our adapter has significant performance improvements for

all encoders. All pre-trained feature encoders are generally

defective. We use CLIP and ImageBind as an example, and

applying our adapter to the multimodal features extracted

by these pre-trained feature encoders has led to a signifi-

cant improvement in the performance of the recommender

system. This suggests that the deficiencies are mainly due

to the pre-training data, indicating that the content fea-

tures extracted by the pre-trained encoders generally do

not reflect the users’ preferences.

• More powerful encoder can extract more sufficient con-

tent information. ImageBind has better overall preformance

than CLIP when applied to recommendation models. This

indicates that more advanced encoders are able to extract

more sufficient content information. Thus better modelling

of users and items to improve the performance of recom-

mendations.

(b) Performance comparison with existing parameter tuning
methods
Table 3 shows the comparison between our adapter and existing

efficient parameter adaptation methods. From the table,we find

several observations:

• The performance of our adapter is overall significantly bet-

ter than existing efficient parameter tuning methods. This

9
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Table 4: The training cost. #Param: number of tunable pa-
rameters, Time/E: averaged training time for one epoch, ’s’
means seconds. The results are collected on a GeForce RTX
4090 GPU.

Dataset Method #Param. Time/E

TMALL

BM3 9.45M 0.38s

BM3+LoRA +4.10K +0.04s

BM3+SoftPrompt +0.13K +0.02s

BM3+BeFA +0.20M +0.08s

Microlens

BM3 18.36M 0.98s

BM3+LoRA +4.10K +0.07s

BM3+SoftPrompt +0.13K +0.04s

BM3+BeFA +0.20M +0.15s

H&M

BM3 21.26M 1.20s

BM3+LoRA +4.10K +0.04s

BM3+SoftPrompt +0.13K +0.01s

BM3+BeFA +0.20M +0.12s

Figure 7: The effect of LoRA and SoftPrompt Turning on
the adaptation of features. (a) is the original heatmap, (b) is
the heatmap of visual features adapted by LoRA, (c) is the
heatmap of visual features adapted by SoftPrompt Turning
and (d) is the heatmap of visual features adapted by BeFA.

indicates that our adapter is better suited for the recom-

mendation task than generalized efficient parameter tuning

methods. It suggests that our adapter employs behavioral

information guidance to more effectively obtain content

features related to users’ preferences, thereby improving

the effectiveness of recommendations.

• Existing parameter tuning approaches are not generalized

for recommendation tasks. The performance decreases in

Figure 8: The gaps in the effectiveness of our adapter on
different datasets. (a) is the original image. (b) is the heatmap
of the visual features extracted by the pre-trained CLIP. (c)
is the heatmap of visual features adapted by BeFA.

some cases instead, which indicates that these existing gen-

eralized parameter tuning methods are not necessarily suit-

able for the recommendation tasks. This highlights the im-

portance of incorporating behavioral information guidance

in recommendation tasks to improve model performance.

5.2.2 Efficiency. We also analyze the efficiency of our adapter with

other existing efficient parameter tuning methods on the BM3

model. The specific model parameter counts and training costs

are shown in Table 4. Compared to the overall model training time,

our training time increases by only about 15%, indicating that our

method is not only effective but also efficient.

Although the design of our adapter is more complex compared

to LoRA and Soft-Prompt Turning the increase in the number of

parameters after using our adapter is still small compared to the

overall parameters of the recommender system itself, ranging from

0.93% to 2.09%. In terms of training costs, the increase in overall

training time after using our adapter is still within an acceptable

range. The training time for the recommender system using our

adapter is comparable to that of using LoRA and Soft-Prompt Tun-

ing. This suggests that although our adapter introduces additional

parameters, it does not impose a significant burden on the train-

ing process. The substantial improvement in performance of our

adapter highlights its efficiency, trading a small number of pa-

rameters and training time gains for a significant improvement in

recommendation accuracy.

5.3 Visualization Analysis(RQ2&RQ3)
5.3.1 Case Study.
(a)Effectiveness with different models
To visually demonstrate the effect of our adapter on content fea-

tures, we applied it to the proposed visualization attribution analy-

sis. Specifically, before calculating the similarity between content

features and behavioral features in the attribution analysis, we pro-

cessed the content features with our adapter. We then computed

similarity weights with the behavioral features and generated new
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Figure 9: The Distribution of representations in different multimodal recommendation model in visual modalities before and
after adaptation by BeFA.

heatmaps using these newly calculated weights with the corre-

sponding masked images.

As shown in Figure 6, by analysing the heatmap before and after

our adapter, we can clearly find that our adapter’s enhancement of

content features is very obvious. Our adapter significantly improves

the attention areas of features extracted by the pre-trained feature

encoder, addressing issues of information drift and information

omission. The adapted features focus more on the recommended

products, with a marked decrease in attention to background ele-

ments unrelated to the recommendation. This reduction in noise

enhances feature representation and consequently improves rec-

ommendation performance.

Additionally, the adapted features more comprehensively cap-

ture product details, significantly increasing the coverage of the

area of interest for products. This comprehensive extraction of prod-

uct details not only improves feature recognition but also enhances

the recommender system’s ability to model product features. This

means that the recommender system is able to more accurately cap-

ture the core features of the product, thus providing more relevant

and accurate results when making recommendations. Overall,our

adapter enables multimodal recommender systems to better utilize

content features by using behavioral information to guide feature

adaptation, thus significantly improving recommendation perfor-

mance.

(b) Effectiveness with different encoders
We utilize the content features extracted by two representative

multimodal feature encoders, the ViT-32/B version of CLIP and Im-

ageBind, and analyze the heatmaps of the content features within

different downstream recommendation models after applying BeFA.

Our analysis reveals that the content features extracted by both

encoders exhibit issues of information drift and information omis-

sion. After applying BeFA, these content features are better focused

on the recommended products themselves. This demonstrates that

the deficiencies of pre-trained feature encoders are common in

multimodal recommendation tasks, while our adapter effectively

adapts to the content features extracted by different feature en-

coders, highlighting its general applicability.

(c) Comparison with existing adaptation methods
We visualize and analyze the content features adapted by LoRA and

Soft-Prompt Tuning, as shown in Figure 7. The results indicate that

while LoRA and Soft-Prompt Tuning provide some optimization,

the degree of adaptation is limited. The adapted content features

still exhibit issues such as content error and content insufficiency,

failing to focus accurately on the content of the product itself. These

methods fail to adequately address the issues of information drift

and information omission. This is the reason for the overall poor

performance of existing adaptation methods in recommendation

tasks. In contrast, the impact of BeFA on content features content
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features is significantly better than that of existing methods, which

is why BeFA performs well in the recommendation task.

(d) Analysis in different scenarios
We employed three datasets ranging from simple to complex sce-

narios. The H&M dataset comprises only product images with

minimal interference, making it relatively clean. In contrast, the

Microlens dataset comprises more complex images with more back-

ground interference. Our adapter demonstrated significant improve-

ments across both datasets. Specifically, on the H&M dataset, it

increases Recall@20 and NDCG@20 by 14.17% and 17.34%, respec-

tively. Meanwhile, on the Microlens dataset, our adapter increases

Recall@20 and NDCG@20 by 4.58% and 5.19%, respectively. These

findings indicate the adapter’s effectiveness across varying levels

of scene complexity. Moreover, as illustrated in Figure 8, even in

complex scenarios, our adapter effectively removes irrelevant in-

formation and locates the recommended products as precisely as

possible

5.3.2 Representation distribution analysis. To visually demonstrate

the impact of BeFA on adjusting content features, we visualize

the distribution of visual representations in the TMALL dataset.

Figure 9 illustrates the comparison of our adapter’s application

to feature distributions across various recommendation models.

Specifically, we randomly sample 500 item representations from

the TMALL dataset and map them to two-dimensional normalized

vectors on the unit hypersphere S1
(i.e., a circle with a radius of

1) by using t-SNE [31]. Subsequently, we employ Gaussian kernel

density estimation(KDE) [30] to plot the distribution of these two-

dimensional features.

Further examining the changes in the distribution of two dimen-

sional features across different recommendation models before and

after applying BeFA, we observe that the original feature distribu-

tion is more dispersed, forming multiple small dense regions. This

distribution indicates that there is a large amount of noise in the

visual feature extraction process, hindering the models’ ability to

effectively distinguish key features of different products. In contrast,

after applying BeFA, the feature distribution becomes more uni-

form and smooth, which indicates that our adapter has significant

effects in eliminating noise. This improvement not only enhances

feature recognition capability but also improves the model’s ability

to distinguish different content features [32].

Moreover, comparing the changes in feature distributions across

different models, it can be found that BeFA has strong adaptability.

The feature distributions of various multimodal recommendation

models show significant improvements after applying BeFA. This

indicates that our adapter is not only effective on a single model but

also has strong generalization capabilities across different recom-

mender systems. This adaptability highlights BeFA’s wide potential

and value in practical applications.

5.4 Sensitivity Analysis(RQ4)
We investigate the size of the decoupling space relative to the origi-

nal embedding space, as shown in Fig.10. The results show that the

optimal size of the decoupling space is about four times the size of

the original embedding space on some datasets. When the decou-

pling space dimension is small (e.g., 0.125x and 0.25x), it may create

an information bottleneck, leading to poor performance across all
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Figure 10: Performance comparison w.r.t. different size of the
decoupling space relative to the original embedding space 𝜆.

datasets in both Recall@20 and NCGD@20. A smaller decoupling

space cannot hold sufficient information, making it difficult for the

model to accurately capture and differentiate features, thereby neg-

atively impacting recommendation performance. Conversely, an

excessively large decoupling space dimension may lead to dimen-

sionality catastrophe, introducing noise and redundant features

which complicates the model’s ability to effectively distinguish and

learn features in a high-dimensional space. Additionally, its number

of parameters and the computational cost will increase dramati-

cally, bringing additional burden to the training process, which is

impractical for practical application scenarios.

Furthermore, we find that there is a significant difference in

the performance of Microlens, TMALL and H&M datasets under

varying decoupling space sizes. For the Microlens dataset, both

Recall@20 and NCGD@20 achieve the optimal performance when

the decoupling space size is four times of the original embedding

space. In contrast, in the TMALL dataset, although the overall trend

is similar, the optimal point fluctuates slightly, suggesting that the

size of the decoupling space may need to be adjusted on different

datasets to obtain optimal results. The overall adapter performance

fluctuates greatly with the change in the decoupling space size,

highlighting the challenge of finding the optimal size. This is one

of the limitations of our work, which could be addressed by consid-

ering the decoupling space size as a learnable parameter in future

research. This approach could adaptively adjust the decoupling

space size for different application scenarios to achieve the best

performance.

6 CONCLUSION
In this paper, we introduce an attribution analysis for visually an-

alyzing deficiencies of the content features. We found that the

content features of certain products suffer from information drift

and information omission, and theoretically prove that these defi-

ciencies lead to a decrease in the performance of the recommender

systems. To address these issues, we propose Behavior-driven Fea-

ture Adapter (BeFA) adapter which adapts content features through

the guidance of behavioral information, thereby enhancing the ex-

pressiveness of the content features and significantly improve the

performance of the recommender systems

In our future work, we consider introducing the size of the decou-

pling space as a learnable parameter into the training of the adapter,

so that the optimized performance can be achieved in different

scenarios, enhancing its general applicability.
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